+0

helppppp

0
50
7
+1364

Given  $$R(-6, 19)$$ and $$S(15, -5)$$ , what are the coordinates of the point on segment $$\overline{RS}$$ two-thirds of the distance from $$S$$$$R$$ to ?

tertre  Dec 29, 2017
Sort:

#1
+91451
+2

Divide the interval  S(15,-5)  R(-619)  in the ratio  2:1

$$(\frac{1*15+2*-6}{3},\frac{1*-5+2*19}{3})\\ =(\frac{15-12}{3},\frac{-5+38}{3})\\ =(\frac{3}{3},\frac{33}{3})\\ =(1,11)$$

Melody  Dec 29, 2017
#2
+1364
0

is the answer (1,11)? If so, it's wrong...

tertre  Dec 29, 2017
#3
+81022
0

It's easier to find 1/3 of the distance from R to S.....so we have

[ -6  +  (15 - - 6)/3   , 19  +  ( -5 - 19)/ 3  ]  =

[ -6  + 21/3,  19  +  -24/3 ]  =

[ -6   + 7,  19  - 8  ]  =

(1, 11)

Did you leave something out, tertre ???

CPhill  Dec 29, 2017
#4
+1364
0

Yep, I did. Sorry: Given $$R(-6,19)$$ and $$S(15,-5)$$, what are the coordinates of the point on segment $$\overline{RS}$$  two-thirds of the distance from $$R$$ to $$S$$ ?

tertre  Dec 29, 2017
#5
+81022
+2

OK....we have

[  - 6  +  (15 - - 6)(2/3),  19  + (-5 - 19)(2/3)  ]

[ - 6  +  (21)(2/3), 19 + (-24)(2/3) ]

[ - 6  + 14,  19  -  16 ]

(8, 3)

CPhill  Dec 29, 2017
#6
+1364
+1

Oh, ok, I get it! Thanks so much!

tertre  Dec 29, 2017
#7
+64
+3

We need to find two-thirds of the difference in the x values of points R and S and add this to the X value of point R . Then we will find two-thirds of the difference in the y values and add this to the y value of point R . When we solve for the x value we find that $$\frac{2}{3}\times (15-(-6))=\frac{2}{3} \times 21 = 14$$ , and -6+14=8 , so x=8 . When we solve for y we find that $$\frac{2}{3} \times (-5 -19) = \frac{2}{3} \times (-24) = -16$$ , and $$19 + (-16) = 3$$ , so y=3 . The coordinates are $$\boxed{(8,3)}$$ .

azsun  Dec 29, 2017

8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details