+0

# Homework Help

0
98
3

What is (x+4)^4 expanded

Guest Feb 15, 2017

#3
+18624
+10

What is (x+4)^4 expanded

$$\small{ \begin{array}{|rcll|} \hline (x+4)^4 &=& [(x+4)^2]^2 \quad &| \quad (x+4)^2 = x^2+8x+16 \\ &=& (x^2+8x+16)^2 \\ &=& [x^2+(8x+16)]^2 \\ &=& (x^2)^2 + 2\cdot x^2 \cdot (8x+16)+(8x+16)^2 \quad &| \quad (8x+16)^2 = (8x)^2+2\cdot 8x \cdot 16 + 16^2 \\ &=& (x^2)^2 + 2\cdot x^2 \cdot (8x+16)+(8x)^2+2\cdot 8x \cdot 16 + 16^2 \\ &=& x^4 + 2\cdot x^2 \cdot 8x +2\cdot x^2 \cdot 16 +64x^2+ 256x + 256 \\ &=& x^4 + 16 x^3 +32x^2 +64x^2+ 256x + 256 \\ &=& x^4 + 16\ x^3 +94x^2+ 256x + 256 \\ \hline \end{array} }$$

heureka  Feb 16, 2017
Sort:

#1
+234
0

(x+4)^4 is the same as (x+4)(x+4)(x+4)(x+4)

which can be further simplified to 4x+256

;)

#2
+10614
0

I just went to WolframAlpha :

ElectricPavlov  Feb 15, 2017
#3
+18624
+10

What is (x+4)^4 expanded

$$\small{ \begin{array}{|rcll|} \hline (x+4)^4 &=& [(x+4)^2]^2 \quad &| \quad (x+4)^2 = x^2+8x+16 \\ &=& (x^2+8x+16)^2 \\ &=& [x^2+(8x+16)]^2 \\ &=& (x^2)^2 + 2\cdot x^2 \cdot (8x+16)+(8x+16)^2 \quad &| \quad (8x+16)^2 = (8x)^2+2\cdot 8x \cdot 16 + 16^2 \\ &=& (x^2)^2 + 2\cdot x^2 \cdot (8x+16)+(8x)^2+2\cdot 8x \cdot 16 + 16^2 \\ &=& x^4 + 2\cdot x^2 \cdot 8x +2\cdot x^2 \cdot 16 +64x^2+ 256x + 256 \\ &=& x^4 + 16 x^3 +32x^2 +64x^2+ 256x + 256 \\ &=& x^4 + 16\ x^3 +94x^2+ 256x + 256 \\ \hline \end{array} }$$

heureka  Feb 16, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details