+0

How do I solve this using logarithms?

0
156
2

3^(x+1)=2^(x+2)

Guest Apr 10, 2017
Sort:

#1
+6810
+2

$$3^{x+1}=2^{x+2}\\ (x+1)\ln 3=(x+2)\ln2\\ x\ln 3 - x\ln 2 = 2\ln 2 - \ln 3\\ x = \dfrac{2\ln 2 - \ln 3}{\ln 3 - \ln 2}$$

Use the calculator and you get the answer.

MaxWong  Apr 10, 2017
#2
+18610
+5

3^(x+1)=2^(x+2)

$$\begin{array}{|rcll|} \hline 3^{x+1}& = & 2^{x+2} \\ 3^{x+1}& = & 2^{x+1}\cdot 2^1 \quad & | \quad : 2^{x+1} \\ \frac{ 3^{x+1} } {2^{x+1}} & = & 2 \\ (\frac32)^{x+1} & = & 2 \\ (1.5)^{{x+1}} & = & 2 \quad & | \quad \ln \text{both sides} \\ \ln\Big((1.5)^{x+1} \Big) & = & \ln(2) \quad & | \quad \ln(a^b) = b\cdot \ln(a) \\ (x+1)\cdot \ln(1.5) & = & \ln(2) \quad & | \quad : \ln(1.5) \\ x+1& = & \frac{\ln(2)} { \ln(1.5) } \quad & | \quad -1 \\ x & = & \frac{\ln(2)} { \ln(1.5) } -1 \\ x & = & 0.70951129135 \\ \hline \end{array}$$

heureka  Apr 10, 2017

15 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details