+0  
 
0
128
3
avatar

How do you evaluate cos(tan^-1 (1/4) + cos^-1 (1/2))?

Guest Mar 19, 2017
Sort: 

2+0 Answers

 #2
avatar+75344 
+1

arctan (1/4) =  14.04°

 

arccos (1/2)   = 60°

 

So

 

cos ( arctan (1/4)  + arccos (1/2) )   =

 

cos (14.04 + 60)  =

 

cos (74.04)   ≈ 0.275

 

 

cool cool cool

CPhill  Mar 20, 2017
 #3
avatar
+1

Find the third side of the right-angled triangles and read off the other two ratios,

Angle A = \(\tan^{-1}(1/4)=\cos^{-1}(4/\sqrt{17})=\sin^{-1}(1/\sqrt{17}),\)

Angle B = \(\cos^{-1}(1/2)=\sin^{-1}(\sqrt{3}/2)=\tan^{-1}\sqrt{3}\).

\(\displaystyle \cos(A+B)= \cos(A)\cos(B)-\sin(A)\sin(B)\\=\frac{4}{\sqrt{17}}.\frac{1}{2}-\frac{1}{\sqrt{17}}.\frac{\sqrt{3}}{2}=\frac{4-\sqrt{3}}{2\sqrt{17}}\approx0.275029.\)

Guest Mar 20, 2017

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details