+0  
 
0
79
2
avatar

expression: \({4\over 3-2\sqrt{2}}\)

answer: \({12 +8 \sqrt{2}}\)

and please show step by step how you did it ^.^

Guest Oct 2, 2017
Sort: 

2+0 Answers

 #1
avatar
+2

Simplify the following:
4/(3 - 2 sqrt(2))

Multiply numerator and denominator of 4/(3 - 2 sqrt(2)) by 2 sqrt(2) + 3:
(4 (2 sqrt(2) + 3))/((3 - 2 sqrt(2)) (2 sqrt(2) + 3))

(3 - 2 sqrt(2)) (2 sqrt(2) + 3) = 3×3 + 3×2 sqrt(2) - 2 sqrt(2)×3 - 2 sqrt(2)×2 sqrt(2) = 9 + 6 sqrt(2) - 6 sqrt(2) - 8 = 1:
(4 (2 sqrt(2) + 3))/(1)

(4 (2 sqrt(2) + 3))/(1) = 4 (2 sqrt(2) + 3):
4 (2 sqrt(2) + 3) =8sqrt(2) + 12

Guest Oct 2, 2017
 #2
avatar+91229 
+2

\(\sqrt2\approx 1.414213562\)

 

I suppose you could just use closer and closer estimations of sqrt2 and see if the answers keep getting closer...

 

\( \sqrt2 \approx 1.4\\ {4\over 3-2\sqrt{2}}\approx {4\over 3-2*1.4}\approx \frac{4}{0.2}\approx 20\\ 12+8\sqrt2\approx 12+8*1.4=12+8+3.2=23.2\)

 

\(\sqrt2 \approx 1.41\\ {4\over 3-2\sqrt{2}}\approx {4\over 3-2*1.41}\approx \frac{4}{0.18}\approx 22.2\\ 12+8\sqrt2\approx 12+8*1.41=12+11.28=23.28\)

 

 

The answers are getting close, answer certainly passes reasonable checks :)

Melody  Oct 2, 2017

19 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details