+0  
 
0
31
1
avatar

how to find the turning point of a parabola?

 
Guest Oct 13, 2017
social bar

Best Answer 

 #1
avatar+4728 
+2

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

 
hectictar  Oct 13, 2017
Sort: 

1+0 Answers

 #1
avatar+4728 
+2
Best Answer

When the equation of the parabola is in this form:

 

y  =  ax2 + bx + c

 

The  x-coordinate  of the turning point   =   - \(\frac{b}{2a}\)

 

----------

 

For example, if the equation of the parabola is

 

y  =  3x2 + 4x + 1

 

The  x-coordinate  of the turning point   =   - \(\frac{4}{2(3)}\)   =   - \(\frac{2}{3}\)

 

Plug this in for  x  to find the value of the  y-coordinate.

 

y   =   3( - \(\frac{2}{3}\) )2 + 4( - \(\frac{2}{3}\) ) + 1   =   - \(\frac13\)

 

So the turning point is  ( - \(\frac{2}{3}\),  - \(\frac{1}{3}\) )

 
hectictar  Oct 13, 2017

11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details