+0

# I have the same problem like the guest!!!

-1
159
4
+421

14^15 mod 15

Sort:

#1
+6900
+1

14^1 mod 15 = 14

14^2 mod 15 = 1

14^3 mod 15 = 14

14^4 mod 15 = 1

.

.

.

We can see that 14^(2n+1) mod 15 = 14 and 14^(2n) mod 15 = 1

So that 14^15 mod 15 = 14. :D

MaxWong  Jun 26, 2017
#2
+6900
0

Now take an attempt on this problem:

$$14^{(1+2+3+4+5+6+...+107)}\pmod {15}=??$$

MaxWong  Jun 26, 2017
#3
+1

1+2+3+4+5+6...........+ 107 = [107 x 108] / 2 =5,778. So we have: 14^5,778 mod 15 =1

Guest Jun 26, 2017
#4
+18777
+1

14^15 mod 15

$$\begin{array}{|rcll|} \hline \mathbf{ 14^{15} \pmod {15} =\ ? } \\\\ && 14^{15} \pmod {15} \quad &| \quad 14 \equiv -1 \pmod {15} \\ &\equiv& (-1)^{15} \pmod {15} \quad &| \quad (-1)^{15} = -1 \\ &\equiv& -1 \pmod {15} \\ &\equiv& -1 +15 \pmod {15} \\ &\equiv& 14 \pmod {15} \\\\ \mathbf{ 14^{15} \pmod {15} = 14 } \\ \hline \end{array}$$

heureka  Jun 26, 2017
edited by heureka  Jun 26, 2017

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details