+0

# If a,b,c are integers from the set of positive integers less than 7 such that

+1
118
2
+207

If a,b,c are integers from the set of positive integers less than 7 such that

\begin{align*} abc&\equiv 1\pmod 7,\\ 5c&\equiv 2\pmod 7,\\ 6b&\equiv 3+b\pmod 7, \end{align*}

then what is the remainder when a+b+c is divided by 7?

RektTheNoob  Aug 8, 2017
Sort:

#1
0

By simple iteration:

a = 3, b = 2, c=6

{3+2+6} mod 7 = 4

Guest Aug 8, 2017
#2
+18777
0

If a,b,c are integers from the set of positive integers less than 7 such that

\begin{align*} abc&\equiv 1\pmod 7,\\ 5c&\equiv 2\pmod 7,\\ 6b&\equiv 3+b\pmod 7, \end{align*}

then what is the remainder when a+b+c is divided by 7 ?

$$\begin{array}{rcll} \mathbf{Formula}: \\\\ 6b & \equiv & 3+b \pmod 7 \quad & | \quad -b \\ 6b-b & \equiv & 3+b-b \pmod 7 \\ 5b & \equiv & 3 \pmod 7 \\ \begin{array}{|rcll|} \hline \mathbf{5b} &\mathbf{\equiv}& \mathbf{3 \pmod 7} \\ \hline \end{array} & (1) \\\\ \begin{array}{|rcll|} \hline \mathbf{5c} &\mathbf{\equiv}& \mathbf{2 \pmod 7} \\ \hline \end{array} & (2) \\\\ \begin{array}{|rcll|} \hline \mathbf{abc} &\mathbf{\equiv}& \mathbf{1 \pmod 7} \\ \hline \end{array} & (3) \\\\ \begin{array}{|rcll|} \hline \mathbf{a+b+c} &\mathbf{\equiv}& \mathbf{x \pmod 7} \\ \hline \end{array} & (4) \\\\ (1)+(2): \qquad 5b+5c & \equiv & 3+2 \pmod 7\\ 5(b+c) & \equiv & 5 \pmod 7 \quad & | \quad :5 \\ \frac{5(b+c)}{5} & \equiv & \frac{5}{5} \pmod 7 \\ b+c & \equiv & 1 \pmod 7 \\ \begin{array}{|rcll|} \hline \mathbf{b+c} &\mathbf{\equiv}& \mathbf{1 \pmod 7} \\ \hline \end{array} & (5) \\\\ (5) \text{ in }(4): \qquad a+b+c & \equiv & x \pmod 7 \\ a+ (b+c) & \equiv & x \pmod 7 \\ a+ (1) & \equiv & x \pmod 7 \\ a+ 1 & \equiv & x \pmod 7 \\ \begin{array}{|rcll|} \hline \mathbf{a+ 1 } &\mathbf{\equiv}& \mathbf{x \pmod 7} \\ \hline \end{array} & (6) \\\\ (1) \times (2): \qquad 5b\times 5c & \equiv & 3\times 2 \pmod 7 \\ 25bc & \equiv & 6 \pmod 7 \quad & | \quad 6 \equiv -1 \pmod 7 \\ 25bc & \equiv & -1 \pmod 7 \\ \begin{array}{|rcll|} \hline \mathbf{25bc} &\mathbf{\equiv}& \mathbf{-1 \pmod 7} \\ \hline \end{array} & (7) \\\\ \mathbf{a=\ ? } \\ (3) \div (7): \qquad \frac{abc}{25bc} & \equiv & \frac{1}{-1} \pmod 7 \\ \frac{a}{25} & \equiv & -1 \pmod 7 \quad & | \quad \times 25 \\ \frac{25a}{25} & \equiv & (-1)\cdot 25 \pmod 7 \\ a & \equiv & -25 \pmod 7 \\ a & \equiv & -25 + 4\times 7 \pmod 7 \\ a & \equiv & -25 + 28 \pmod 7 \\ a & \equiv & 3 \pmod 7 \\ a-3 &=& n\cdot 7 \\ a &=& 3+ n\cdot 7 \qquad n \in \mathbb{Z} \\ \begin{array}{|rcll|} \hline \mathbf{a} &\mathbf{=}& \mathbf{ 3+ n\cdot 7 \qquad n \in \mathbb{Z} } \\ \hline \end{array} & (8) \\\\ \mathbf{x=\ ? } \\ (6): \qquad a+1 & \equiv & x \pmod 7 \quad & | \quad a = 3+ n\cdot 7 \\ 3+ n\cdot 7 + 1 & \equiv & x \pmod 7 \\ 4+ n\cdot 7 & \equiv & x \pmod 7 \quad & | \quad n\cdot 7 \pmod 7 = 0 \\ 4 & \equiv & x \pmod 7 \\ 4 \pmod 7 &=& x \\ 4 &=& x \\ \begin{array}{|rcll|} \hline \mathbf{x} &\mathbf{=}& \mathbf{ 4 } \\ \hline \end{array} \\ \end{array}$$

The remainder when $$a+b+c$$ is divided by $$7$$ is $$\mathbf{4}$$

heureka  Aug 10, 2017
edited by heureka  Aug 10, 2017
edited by heureka  Aug 10, 2017
edited by heureka  Aug 10, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details