+0

# If $\left(\sqrt[4]{11}\right)^{3x-3}=\frac{1}{5}$, what is the value of $\left(\sqrt[4]{11}\right)^{6x+2}$? Express your answer as a fractio

+1
93
2
+417

If $$\left(\sqrt[4]{11}\right)^{3x-3}=\frac{1}{5}$$, what is the value of $$\left(\sqrt[4]{11}\right)^{6x+2}$$? Express your answer as a fraction.

off-topic
michaelcai  Sep 16, 2017
edited by michaelcai  Sep 16, 2017
Sort:

#1
+3
+2

I hope this helps ( i took a snapshot from word, cause LaTeX gave me cancer ).

DrDros  Sep 16, 2017
#2
+78719
+1

Thanks, Dr Dros!!!

Here's another method without resorting to logs

[(11)^ (1/4)] ^(3x -3)  = 1/5     implies that

[  11 ^(x - 1) ] ^ (3/4)   = 1/5       take both sides to the 4/3 power

[11 ^(x - 1) ]   =  (1/5)^(4/3)

[11^x ] / 11  =   (1/5)^(4/3)

11^x  =  11* (1/5)^(4/3)

So.....  11^(6x)  =  (11^x)^6  =  [ 11 * (1/5)^(4/3) ]^6  =  [ 11^6] * [ 1/5]^8

So..... [11^(1/4)]^(6x + 2)  =   [ 11^(6x + 2) ] ^(1/4)  =  [ 11 ^(6x) * 11^2] ^ (1/4)  =

[ 11^6 * (1/5)^8 ] ^(1/4) *  11^(1/2)   =

[ 11^(6/4)] * [(1/5)^8]^(1/4) * 11^(1/2)  =

[11 ^ (3/2) * [ (1/5) ^2] * 11^(1/2) =

[ 11 ^2]  *  (1 / 25)  =

121  / 25

CPhill  Sep 16, 2017

### 3 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details