+0  
 
0
159
1
avatar

 If sin (theta) = √11/5 and theta is in the 2nd quadrant, find the exact values (without a calculator) of:

Cos (theta)
Tan (theta)

Guest Apr 28, 2017
Sort: 

1+0 Answers

 #1
avatar+4716 
+1

sin2θ + cos2θ = 1

 

(√11/5)2 + cos2θ = 1

 

11/25 + cos2θ = 1

 

cos2θ = 1 - 11/25

 

cos θ = \(-\sqrt{\frac{14}{25}}=-\frac{\sqrt{14}}{5}\)

 

 

tan θ = sin θ / cos θ

 

tan θ = \(\frac{\sqrt{11}}{5}/-\frac{\sqrt{14}}{5}=\frac{\sqrt{11}}{5}\cdot-\frac{5}{\sqrt{14}}=-\frac{\sqrt{11}}{\sqrt{14}}=-\sqrt{\frac{11}{14}}\) 

 

*edit* made it for θ in the second quadrant.

hectictar  Apr 28, 2017
edited by hectictar  Apr 30, 2017

16 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details