+0

# If x=0, what is the qotient of 40/x?

0
453
6

If x=0, what is the quotient of 40/x?

Guest May 17, 2014

#5
+18829
+5

Hi Melody,

thank you for $$\pm\infty$$.

Now to the limits:

\prod\limits_{i=1}^n x_i

$$\prod\limits_{i=1}^n x_i$$

\sum\limits_{i=1}^n i

$$\sum\limits_{i=1}^n i$$

\lim\limits_{ n \to \infty }x_n

$$\lim\limits_{ n \to \infty }x_n$$

\int\limits_{x=0}^{x=1}

$$\int\limits_{x=0}^{x=1}$$

\frac{40}{(1/10)} $$\frac{40}{(1/10)}$$ ?

$$\frac{40}{\big(1/10\big)}$$

\frac{40}{\big(1/10\big)}

Bye

heureka  May 19, 2014
Sort:

#1
+5

The quotient of 40/x is undefined. In my opinion I believe the answer should be zero, because how many forties are in zero? Zero.

Guest May 17, 2014
#2
+81004
+5

Anonymous is correct, it is undefined.

To see this, assume we have 40/0.

So we're asking ourselves, what thing can we multiply by 0 to get 40??

Answer, there isn't anything. 0 times any number = 0.

CPhill  May 17, 2014
#3
+18829
+5

let x=1:   $${\frac{{\mathtt{40}}}{{\mathtt{1}}}} = {\mathtt{40}}$$

let x=$$\frac{1}{10}$$=0.1: $${\frac{{\mathtt{40}}}{\left({\frac{{\mathtt{1}}}{{\mathtt{10}}}}\right)}} = {\mathtt{400}}$$

latex code: \frac{1}{10}

let x=$$\frac{1}{1000}$$=0.001: $${\frac{{\mathtt{40}}}{\left({\frac{{\mathtt{1}}}{{\mathtt{1\,000}}}}\right)}} = {\mathtt{40\,000}}$$

latex code: \frac{1}{1000}

let x=$$\frac{1}{10000000000}$$=0.0000000001: $${\frac{{\mathtt{40}}}{\left({\frac{{\mathtt{1}}}{{\mathtt{10\,000\,000\,000}}}}\right)}} = {\mathtt{400\,000\,000\,000}}$$

latex code: \frac{1}{10000000000}

let x=$$\frac{1}{100000000000000000000}$$=0.00000000000000000001:$${\frac{{\mathtt{40}}}{\left({\frac{{\mathtt{1}}}{{\mathtt{100\,000\,000\,000\,000\,000\,000}}}}\right)}} = {\mathtt{4\,000\,000\,000\,000\,000\,000\,000}}$$

latex code: \frac{1}{100000000000000000000}

...

let x=0=0.0000000000000000...: $$\boxed{\frac{40}{0}=\infty}$$

latex code: \boxed{\frac{40}{0}=\infty}

40/x  if x=0  is infinite!

heureka  May 18, 2014
#4
+91451
+5

Hi Heureka,

You have an excellent argument.

BUT

what if you start with   $$x=\dfrac{40}{(\frac{-1}{10})}\\\\$$    and then continue with a similar argument to yours.

I think that you end up with $$\frac{40}{0}=\:-\infty$$

It can't equal   $$-\infty \quad and \quad +\infty$$   at the same time therefore it is undefined.

-------------------------------------------

I really need to learn to write limits using Latex!

also

\frac{40}{(1/10)}

$$\frac{40}{(1/10)}$$

How did you get it to write the fraction upright on the bottom more neatly than mine?

I had to go into display mode else it was too squashy.

Thank you.

Melody  May 19, 2014
#5
+18829
+5

Hi Melody,

thank you for $$\pm\infty$$.

Now to the limits:

\prod\limits_{i=1}^n x_i

$$\prod\limits_{i=1}^n x_i$$

\sum\limits_{i=1}^n i

$$\sum\limits_{i=1}^n i$$

\lim\limits_{ n \to \infty }x_n

$$\lim\limits_{ n \to \infty }x_n$$

\int\limits_{x=0}^{x=1}

$$\int\limits_{x=0}^{x=1}$$

\frac{40}{(1/10)} $$\frac{40}{(1/10)}$$ ?

$$\frac{40}{\big(1/10\big)}$$

\frac{40}{\big(1/10\big)}

Bye

heureka  May 19, 2014
#6
+91451
0

Thank you for the LaTex Heureka.

Melody  May 19, 2014

### 12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details