+0  
 
0
96
2
avatar+363 

In parallelogram ABCD , diagonals AC¯¯¯¯¯ and BD¯¯¯¯¯ intersect at point E, BE=2x2−3x , and DE=x2+10 .

What is BD ?

AngelRay  Nov 4, 2017

Best Answer 

 #2
avatar+78729 
+1

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

CPhill  Nov 5, 2017
Sort: 

2+0 Answers

 #1
avatar+443 
0

BD = \(\sqrt{3x^{2}-3x+10}\) . This is because, with the Pythagorean theorem, you add the 2 legs of a right triangle and take the square root to get the hypotenuse of it. This only applies if ABCD is a rhombus.

helperid1839321  Nov 4, 2017
 #2
avatar+78729 
+1
Best Answer

The diagonals of a parallelogram bisect each other....therefore...

 

2x^2  - 3x  = x^2  + 10    simplify as

 

x^2 - 3x  - 10  = 0     factor

 

(x - 5) ( x + 2)  = 0

 

Setting each factor to 0 and solving for x, we have that x = 5  or x  = -2

 

Therefore we have two possible values for BD

 

If  x  = 5  ...BD  =  2 [ (5)^2 + 10]  =  2 [ 35 ]  = 70 units

 

If x = - 2, .....BD  = 2 [ (-2)^2 + 10  ] =  2 [ 14 ]  =  28 units

 

 

cool cool cool

CPhill  Nov 5, 2017

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details