+0

# In the figure; AC = BC and BC = 0.5AD

0
73
2

In the figure; AC = BC and BC = 0.5AD

A) Calculate the angle A in the triangle BAD

B) Make the appropriate length for the AC in meter page (choose an appropriate size on page AC) and determine the area of the BAD triangle. Please provide different suggestions on how the area of the triangle BAD can be determined.

Guest Jun 9, 2017
Sort:

#1
0

(Page is suppost to be side)

Guest Jun 9, 2017
#2
+4174
0

I got a strange answer for part A) , but I will post it anyway....

tan(∠BAC)  =  BC / AC            Since  AC = BC  , replace  " AC " with " BC ".

tan(∠BAC)  =  BC / BC

tan(∠BAC)  =  1

∠BAC  =  arctan(1)

∠BAC  =  45º

BC    =  0.5AD                         Multiply both sides of the equation by 2 .

2BC  =  AD                              Since  AC = BC  , replace  " BC " with " AC ".

cos(∠DAC)  =  AC / AD            Replace  " AD "  with  " 2AC " .

cos(∠DAC)  =  AC / (2AC)        Reduce fraction by  AC

cos(∠DAC)  =  1/2

∠DAC  =  arccos(1/2)

∠DAC  =  60º