+0

# In triangle $PQR$, we have $\angle P = 90^\circ$, $QR = 20$, and $\tan R = 4\sin R$. What is $PR$?

+3
85
1
+518

In triangle $PQR$, we have $\angle P = 90^\circ$, $QR = 20$, and $\tan R = 4\sin R$. What is $PR$?

michaelcai  Nov 14, 2017
Sort:

#1
+81027
+1

QR is the hypotenuse of this right triangle....and we have that.....

tan R  = 4 / sin R

sinR * tanR  = 4

sin^2R / cosR =  4

(1 - cos^2R) / cosR  = 4

1 - cos^2R = 4cosR

cos^2R + 4cosR - 1  = 0

Let x = cosR  ........ so....

x^2 + 4x - 1   = 0

Solving this for x  gives

x = - √5 - 2       or   x  =   √5 - 2

However....since R  is acute......the second value will only be good for the cosine

So x =  cos R  =  √5 - 2

So

Cos R  =  PR / QR

√5 - 2  =  PR / 20

So     ....    PR   =  20 ( √5 - 2)

CPhill  Nov 14, 2017

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details