+0  
 
0
126
4
avatar+20 

Find the value of

\(x = 1 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}}.\)

WhoaThere  May 22, 2017
Sort: 

4+0 Answers

 #1
avatar
+1

Your "continued fraction" adds up to =Sqrt(2) =1.4142135623730.......etc.

Guest May 22, 2017
 #2
avatar+76899 
+2

 

Here's how this is determined :

 

Evaluating from the "bottom" to the "top"  .... we have....

 

2 + 1/2  =  5/2

 

2 + 2/5 = 12/5

 

2 + 5/12  = 29/12

 

2 + 12/29  = 70/29

 

1 + 29/70  =  1.4142857142857143   ...further expansion would get us closer and closer to the √2

 

 

cool cool cool

CPhill  May 22, 2017
 #3
avatar+17613 
+2

Another way:

First:  add 1 to both sides:  x + 1  =  2 + [ 1 / [ 2 + [ 1 / [ 2 + 1 / [ ... ] 

Let  y  =  x + 1,  then:                y  =  2 + [ 1 / [ 2 + [ 1 / [ 2 + 1 / [ ... ] 

But   [ 2 + [ 1 / [ 2 + 1 / [ ... ]  =  y

So:                                            y  =  2 + 1 / y

Multiply by y:                            y2  =  2y + 1

Set equal to 0:             y2 - 2y - 1  =  0

Solve (using the quadratic formula):     y  =  1 +/- sqrt(2)

So:                                                  x + 1  =   1 +/- sqrt(2)

The negative answer can't be correct, so:     x + 1  =  1 + sqrt(2)     --->     x  =  sqrt(2)

geno3141  May 22, 2017
 #4
avatar+76899 
0

Thanks, geno....!!!

 

 

cool cool cool

CPhill  May 22, 2017

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details