+0

# Infinite Fraction

0
165
4
+20

Find the value of

\(x = 1 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \ddots}}}}.\)

WhoaThere  May 22, 2017
Sort:

#1
+1

Guest May 22, 2017
#2
+79735
+2

Here's how this is determined :

Evaluating from the "bottom" to the "top"  .... we have....

2 + 1/2  =  5/2

2 + 2/5 = 12/5

2 + 5/12  = 29/12

2 + 12/29  = 70/29

1 + 29/70  =  1.4142857142857143   ...further expansion would get us closer and closer to the √2

CPhill  May 22, 2017
#3
+17693
+2

Another way:

First:  add 1 to both sides:  x + 1  =  2 + [ 1 / [ 2 + [ 1 / [ 2 + 1 / [ ... ]

Let  y  =  x + 1,  then:                y  =  2 + [ 1 / [ 2 + [ 1 / [ 2 + 1 / [ ... ]

But   [ 2 + [ 1 / [ 2 + 1 / [ ... ]  =  y

So:                                            y  =  2 + 1 / y

Multiply by y:                            y2  =  2y + 1

Set equal to 0:             y2 - 2y - 1  =  0

Solve (using the quadratic formula):     y  =  1 +/- sqrt(2)

So:                                                  x + 1  =   1 +/- sqrt(2)

The negative answer can't be correct, so:     x + 1  =  1 + sqrt(2)     --->     x  =  sqrt(2)

geno3141  May 22, 2017
#4
+79735
0

Thanks, geno....!!!

CPhill  May 22, 2017

### 6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details