+0  
 
0
89
1
avatar

Please help with this integral: ∫sin(e^(-2x)) / e^(2x) dx. With steps if possible and thank you.

Guest Jun 12, 2017
Sort: 

1+0 Answers

 #1
avatar
0

Take the integral:
 integral e^(-2 x) sin(e^(-2 x)) dx
For the integrand e^(-2 x) sin(e^(-2 x)), substitute u = -2 x and du = -2 dx:
 = -1/2 integral e^u sin(e^u) du
For the integrand e^u sin(e^u), substitute s = e^u and ds = e^u du:
 = -1/2 integral sin(s) ds
The integral of sin(s) is -cos(s):
 = (cos(s))/2 + constant
Substitute back for s = e^u:
 = (cos(e^u))/2 + constant
Substitute back for u = -2 x:
Answer: | = 1/2 cos(e^(-2 x)) + constant

Guest Jun 12, 2017

9 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details