+0

# integrate ∫(2cos3x + 3sinx) / sin^3x dx and ∫tan^5x csc^5x dx

+3
544
6

integrate ∫(2cos3x + 3sinx) / sin^3x dx and ∫tan^5x csc^5x dx. please i just want to learn and understand

Guest Jun 22, 2015

### Best Answer

#4
+18829
+8

integrate ∫(2cos3x + 3sinx) / sin^3x dx

$$\small{\begin{array}{l|lll} \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx \quad & \quad \cos{(3x)}= \cos{(x)}\cos{(2x)} -\sin(x)\sin{(2x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}[1-2\sin^2{(x)}]-\sin{(x)}\cdot 2\sin{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}[1-2\sin^2{(x)}]-2\sin^2{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}-2\cos{(x)}\sin^2{(x)}-2\sin^2{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}-4\cos{(x)}\sin^2{(x)}\\ =\int \dfrac{2[\cos{(x)}-4\cos{(x)}\sin^2{(x)}] + 3\sin{(x)} }{ \sin^3{(x)} }\ dx & \\ =\int \dfrac{2\cos{(x)}-8\cos{(x)}\sin^2{(x)} + 3\sin{(x)} }{ \sin^3{(x)} }\ dx & \\ = 2 \int \dfrac{ \cos{(x)} } { \sin^3{(x)} }\ dx -8 \int \dfrac{ \cos{(x)}\sin^2{(x)} } { \sin^3{(x)} }\ dx +3 \int \dfrac{ \sin{(x)} } { \sin^3{(x)} }\ dx & \\ = 2 \int \dfrac{ 1 } { \sin^2{(x)} }\cdot\cot{(x)}\ dx -8 \int \dfrac{ \cos{(x)} } { \sin{(x)} }\ dx +3 \int \dfrac{ 1 } { \sin^2{(x)} }\ dx &\\ \quad & \quad \text{Formula:} \\ \quad & \quad \boxed{ \int \frac{f'(x)}{f(x)}=\ln{(f(x))} ~~ \int \frac{\cos{(x)}}{\sin{(x)}}\ dx = \ln {( \sin{(x)} )} } \\ \quad & \quad \boxed{ (\cot{(x)})' = -\frac{1}{\sin^2{(x)}} ~~\int \frac{1}{\sin^2{(x)}}\ dx = -\cot{(x)}}\\ \quad & \quad \boxed{ \int f'(x) \cdot [f(x)]^1 = \frac{ [f(x)]^2}{2} ~~\int \dfrac{ 1 } { \sin^2{(x)} }\cdot\cot{(x)}\ dx = -\frac{\cot^2{(x)}}{2} }\\ = 2 (-\frac{\cot^2{x}}{2}) - 8 \ln {( \sin{(x)} )} + 3 (-\cot{(x)} )&\\\\ = -\cot^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1&\\ \end{array}}\\\\\\$$

$$\small{\begin{array}{rcl} \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\cot^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1 \quad | \quad -\cot^2{(x)}=1-\csc^2{(x)}\\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& 1-\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1 \\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + (c_1+1) \quad | \quad c = c_1+1 \\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c \\\\ \end{array}}$$

heureka  Jun 23, 2015
Sort:

### 6+0 Answers

#1
+91451
+8

hi Bhustancrowe

Mmm

I spent ages doing it the wrong way, here is the right way.  I can't take the credit.  :(

Oh I managed to delete the bit i did correctly - this is the second one - you should

be able to do the first little bit of it  yourself

Melody  Jun 23, 2015
#2
+91451
+8

Now it is right     I had just made a careless error right at the beginning.

Thanks for spotting it Alan     [ I do have a question at the bottom though]

the correct answer is

I have not found my errors  :(

---------------------------------------------------------------------------------

$$\\\int\frac{(2cos3x + 3sinx) }{sin^3x }dx\\\\ =\int\frac{2(cos2xcosx-sin2xsinx) + 3sinx }{sin^3x }dx\\\\ =\int\frac{2cos2xcosx - 2sin2xsinx) + 3sinx }{sin^3x }dx\\\\ =\int\frac{2(cos^2x-sin^2x)cosx - 2(2sinxcosx)sinx) + 3sinx }{sin^3x }dx\\\\ =\int\frac{2cosxcos^2x-2cosxsin^2x - 4sin^2xcosx + 3sinx }{sin^3x }dx\\\\ =\int\frac{2cos^3x-2cosxsin^2x - 4sin^2xcosx + 3sinx }{sin^3x }dx\\\\ =\int\frac{2cos^3x - 6sin^2xcosx + 3sinx }{sin^3x }dx\\\\ =\int\;2cot^3x-\frac{6cosx}{sinx} + 3csc^2x \;dx\\\\ =\int\;2cot^3x\;dx -\int\;\frac{6cosx}{sinx}\;dx +\int\; 3csc^2x \;dx\\\\ =\int\;2cot^3x\;dx -6ln(sinx) +\int\; 3csc^2x \;dx\\\\ =-6ln(sinx)\;+\;\int\;2cot^3x\;dx -3cotx\\\\ =-6ln(sinx)\;-3cotx\;+\;\int\;2cot^3x\;dx$$

$$\\NOW I'll use the reduction formula\\\\ \int\;2cot^3x\;dx\\\\ =2[\frac{-Cot^{3-1}x}{3-1}-\int\;cot^{-2+3}x\;dx]\\\\ =2[\frac{-Cot^{2}x}{2}-\int\;cotx\;dx]\\\\ =-Cot^{2}x-2\;ln(sinx)\\\\$$

$$\\So - continuing from before\\\\ =-6ln(sinx)\;-3cotx\;+\;\int\;2cot^3x\;dx \\\\ =-6ln(sinx)\;-3cotx\;+\; -Cot^{2}x-2\;ln(sinx) +c \\\\ =-8ln(sinx)\;-3Cotx-Cot^{2}x \;+c \\\\$$

-------------------------------------------------------------

Now this is correct but Wolfram Alpha is telling me that  $$cot^2x=csc^2x$$   for the restricted values involed here.

WHY IS THAT ?

Melody  Jun 23, 2015
#3
+26402
+5

Melody,

$$\\ \sin^2+\cos^2=1 \text{ Divide through by }\sin^2 \text{ to get }1+\cot^2=\csc^2$$

So cot2 differs from csc2 by 1.  This 1 is wrapped up in the constant of integration.  i.e. your constant of integration differs from Wolfram Alpha's by 1.

Alan  Jun 23, 2015
#4
+18829
+8
Best Answer

integrate ∫(2cos3x + 3sinx) / sin^3x dx

$$\small{\begin{array}{l|lll} \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx \quad & \quad \cos{(3x)}= \cos{(x)}\cos{(2x)} -\sin(x)\sin{(2x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}[1-2\sin^2{(x)}]-\sin{(x)}\cdot 2\sin{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}[1-2\sin^2{(x)}]-2\sin^2{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}-2\cos{(x)}\sin^2{(x)}-2\sin^2{(x)}\cos{(x)}\\ \quad &\quad \cos{(3x)} = \cos{(x)}-4\cos{(x)}\sin^2{(x)}\\ =\int \dfrac{2[\cos{(x)}-4\cos{(x)}\sin^2{(x)}] + 3\sin{(x)} }{ \sin^3{(x)} }\ dx & \\ =\int \dfrac{2\cos{(x)}-8\cos{(x)}\sin^2{(x)} + 3\sin{(x)} }{ \sin^3{(x)} }\ dx & \\ = 2 \int \dfrac{ \cos{(x)} } { \sin^3{(x)} }\ dx -8 \int \dfrac{ \cos{(x)}\sin^2{(x)} } { \sin^3{(x)} }\ dx +3 \int \dfrac{ \sin{(x)} } { \sin^3{(x)} }\ dx & \\ = 2 \int \dfrac{ 1 } { \sin^2{(x)} }\cdot\cot{(x)}\ dx -8 \int \dfrac{ \cos{(x)} } { \sin{(x)} }\ dx +3 \int \dfrac{ 1 } { \sin^2{(x)} }\ dx &\\ \quad & \quad \text{Formula:} \\ \quad & \quad \boxed{ \int \frac{f'(x)}{f(x)}=\ln{(f(x))} ~~ \int \frac{\cos{(x)}}{\sin{(x)}}\ dx = \ln {( \sin{(x)} )} } \\ \quad & \quad \boxed{ (\cot{(x)})' = -\frac{1}{\sin^2{(x)}} ~~\int \frac{1}{\sin^2{(x)}}\ dx = -\cot{(x)}}\\ \quad & \quad \boxed{ \int f'(x) \cdot [f(x)]^1 = \frac{ [f(x)]^2}{2} ~~\int \dfrac{ 1 } { \sin^2{(x)} }\cdot\cot{(x)}\ dx = -\frac{\cot^2{(x)}}{2} }\\ = 2 (-\frac{\cot^2{x}}{2}) - 8 \ln {( \sin{(x)} )} + 3 (-\cot{(x)} )&\\\\ = -\cot^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1&\\ \end{array}}\\\\\\$$

$$\small{\begin{array}{rcl} \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\cot^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1 \quad | \quad -\cot^2{(x)}=1-\csc^2{(x)}\\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& 1-\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c_1 \\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + (c_1+1) \quad | \quad c = c_1+1 \\\\ \int \dfrac{2\cos{(3x)} + 3\sin{(x)} } { \sin^3{(x)} }\ dx &=& -\csc^2{(x)} - 8\ln {( \sin{(x)} )} - 3\cot{(x)} + c \\\\ \end{array}}$$

heureka  Jun 23, 2015
#5
+91451
0

Thanks Alan,       I should have thought of that

Thanks Heureka :)

Melody  Jun 23, 2015
#6
+35
0

that you very much guys , im a little confused but i'll try to understand it(im kinda slow in math)

bhustancrowe  Jun 23, 2015

### 7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details