+0

# is it f(x)=3(5/3)^-x ​ a exponential growth function?

0
367
1

is it f(x)=3(5/3) a exponential growth function?

Guest Dec 11, 2015

#1
+18827
+10

is it f(x)=3(5/3)^-x a exponential growth function?

$$\begin{array}{rcll} f(x) &=& 3 \cdot \left( \frac53 \right)^{-x} \\ f(x) &=& 3 \cdot \frac{1} { \left( \frac53 \right)^x } \\ f(x) &=& 3 \cdot \frac{1} { \frac{5^x}{3^x} } \\ f(x) &=& 3 \cdot \frac{3^x} { 5^x } \\ f(x) &=& 3 \cdot \left( \frac35 \right)^x \\ \end{array}$$

No it is a decaying function, because: $$\frac35 < 1$$

$$y=a\cdot b^x\\ \text{Example: } y = 3 \cdot \left( \frac35 \right)^x$$

when a > 0 and the b is between 0 and 1, the graph will be decreasing (decaying).

heureka  Dec 11, 2015
Sort:

#1
+18827
+10

is it f(x)=3(5/3)^-x a exponential growth function?

$$\begin{array}{rcll} f(x) &=& 3 \cdot \left( \frac53 \right)^{-x} \\ f(x) &=& 3 \cdot \frac{1} { \left( \frac53 \right)^x } \\ f(x) &=& 3 \cdot \frac{1} { \frac{5^x}{3^x} } \\ f(x) &=& 3 \cdot \frac{3^x} { 5^x } \\ f(x) &=& 3 \cdot \left( \frac35 \right)^x \\ \end{array}$$

No it is a decaying function, because: $$\frac35 < 1$$

$$y=a\cdot b^x\\ \text{Example: } y = 3 \cdot \left( \frac35 \right)^x$$

when a > 0 and the b is between 0 and 1, the graph will be decreasing (decaying).

heureka  Dec 11, 2015

### 4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details