+0

# Is there a 'distributive property of division'?

0
150
2
+314

Is there a "distributive property of division"??

Like as in this question:

(-3)2n+1 /(27*(-3)2n)  n is a positive whole number.

Can you do this:

((-3)2n+1 /27)*((-3)2n+1 /(-3)2n) ??????

THANK YOU

ISmellGood  Aug 26, 2017
Sort:

#1
+80935
+2

(-3)2n+1 /(27*(-3)2n)

Note that we can write this as

(-3)2n+1 / (-3)2n   * ( 1 /27 )

And remember that we have the property that    am / an  = a ( m - n)

So   ...we have....

(-3) [ (2n + 1) - 2n ]  *  (1/27)  =

(-3)1  * (1/27)  =

(-3)  / 27  =

-1 / 9

CPhill  Aug 26, 2017
#2
+5908
+4

Also...

$$\frac{(-3)^{2n+1}}{27\,\cdot\,(-3)^{2n}}=\frac{(-3)^{2n+1}}{27}\,\cdot\,\frac{(-3)^{2n+1}}{(-3)^{2n}}$$

This is not true.

If you multiply the two fractions on the right side together, you will get   $$\frac{[ (-3)^{2n+1})]^2}{27\,\cdot\,(-3)^{2n}}$$     .

$$\frac{a}{bc}\,\neq\,\frac{a}{b}\,\cdot\,\frac{a}{c}$$

But..you can distribute division the same as you distribute multiplication, like this....

$$\frac{8 + 6 +10}{2}=\frac12(8+6+10)\,=\,(\frac12)(8)+(\frac12)(6)+(\frac12)(10)\,=\,4+3+5\,=\,12$$

hectictar  Aug 26, 2017
edited by hectictar  Aug 27, 2017

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details