+0  
 
0
46
1
avatar+281 

Find the sum of the real values of $x$ such that the infinite geometric series $x+\frac{1}{2}x^3+\frac{1}{4}x^5+\frac{1}{8}x^7+\dots$ is equal to $-12$.

michaelcai  Oct 6, 2017
edited by michaelcai  Oct 6, 2017
Sort: 

1+0 Answers

 #1
avatar+90598 
+1

Find the sum of the real values of x such that the infinite geometric series \(x+\frac{1}{2}x^3+\frac{1}{4}x^5+\frac{1}{8}x^7+\dots\text{ is equal to }-12\)

 

This is the sum of a GP

\(a=x\\ r=0.5x^2\\ S_\infty=\frac{a}{1-r}\;\;where\;\;|r|<1\\ |0.5x^2|<1\\ 0.5x^2<1\\ x^2<2\\ -\sqrt2

\(S_\infty=\frac{x}{1-0.5x^2}\\ -12=\frac{x}{1-0.5x^2}\\ -12(1-0.5x^2)=x \\ -12+6x^2=x \\ 6x^2-x -12=0 \\ 6x^2-9x+8x -12=0 \\ 3x(2x-3)+4(2x-3)=0\\ (3x+4)(2x-3)=0\\ x=-4/3\quad or \quad x=3/2\\ 3/2 >\sqrt2\quad \text{so it is illiminated}\\~\\ \therefore\;\;x=-1\frac{1}{3} \)

 

check

 

\(a=-4/3\quad  \\  r=0.5*16/9 = 8/9\\ S_\infty=\frac{-4}{3(1-\frac{8}{9})}\\ S_\infty=-12\\\)

Melody  Oct 6, 2017

14 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details