+0  
 
-1
36
1
avatar+362 

Kim-Ly is writing a coordinate proof to show that the midpoints of a quadrilateral are the vertices of a parallelogram. She starts by assigning coordinates to the vertices of quadrilateral RSTVquadrilateral RSTV and labeling the midpoints of the sides of the quadrilateral as A, B, C, and D.

 

Enter the answers, in simplified form, in the boxes to complete the proof.

The coordinates of point A are (a, b) .

The coordinates of point B are (a + c, b + d).

The coordinates of point C are (    , d). <-- answer

The coordinates of point D are (    ,   ).  <--- answer

The slope of both AB¯¯¯¯¯and DC¯¯¯¯¯ is (________) .  <-- answer 

The slope of both AD¯¯¯¯¯ and BC¯¯¯¯¯ is (________). <--- answer 

Because both pairs of opposite sides are parallel, quadrilateral ABCD is a parallelogram.

 
AngelRay  Nov 14, 2017
Sort: 

1+0 Answers

 #1
avatar+78753 
+1

The coordinates of C are  (2c, d)

 

The coordinates of D are  ( c, 0 )

 

The slope of AB and DC = 

[ (b + d) - b] / [ (a + c) - a ]  =  [ (d - 0)] / [ 2c - c]  =   [ d / c ]

 

The slope of  AD and BC =

[ ( b - 0)] /  [(a - c} =  [ (b + d) - d ] / [  (a + c) - 2c]  =  [ b / (a - c) ]

 

 

cool cool cool

 
CPhill  Nov 14, 2017

13 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details