+0

# Let $a$, $b$, $c$, and $n$ be positive integers. If $a + b + c = 19 \cdot 97$ and $a + n = b - n = \frac{c}{n},$ compute the value of $a$.

0
915
3
+1766

Let $a$, $b$, $c$, and $n$ be positive integers. If $a + b + c = 19 \cdot 97$ and $a + n = b - n = \frac{c}{n},$ compute the value of $a$.

$$Let a, b, c, and n be positive integers. If a + b + c = 19 \cdot 97 and $a + n = b - n = \frac{c}{n},$ compute the value of a.$$

Mellie  Jul 2, 2015

#2
+18829
+15

$$\small{\text{ \begin{array}{lcl} Let  a, b, c,  and  n  be positive integers. If  a + b + c = 19 \cdot 97  and  \\ \left[a + n = b - n = \dfrac{c}{n}\right],  compute the value of  a . \end{array} }}$$

$$\small{\text{ \begin{array}{lrrrcl} & a+b+c=19\cdot 97 \\ \\ \hline \\ (1)& a+n=k \\ (2) & b-n=k &\qquad \qquad (1)+(2): & a+b&=& 2\cdot k\\ (3) & \dfrac{c}{n}=k &\qquad \qquad so & c &=& k\cdot n\\\\ & & & a+b+c &=& 2\cdot k + k\cdot n=19\cdot 97 \\ \hline \\ \end{array} }}\\\\ \small{\text{ \begin{array}{rrclrcl} & 2\cdot k + k\cdot n &=& 19\cdot 97\\\\ & k\cdot(2+n)&=& 19\cdot 97\\\\ I. & {k}\cdot{(2+n)}&=& {19}\cdot {97}\\\\ & \underline{k=19} && \underline{2+n = 97 }& \qquad \Rightarrow \qquad n&=& 95\\ & && & a+n&=& k\\ & && & a+95&=& 19\\ & && & a&=& -76 ~ negative! \\ \\ II. & {k}\cdot{(2+n)}&=& {97}\cdot {19}\\\\ & \underline{k=97} && \underline{2+n = 19 }& \qquad \Rightarrow \qquad n&=& 17\\ & && & a+n&=& k\\ & && & a+17&=& 97\\ & && & a&=& 80 ~ okay! \\ \end{array} }}$$

heureka  Jul 3, 2015
Sort:

#1
+26402
+15

.

Alan  Jul 2, 2015
#2
+18829
+15

$$\small{\text{ \begin{array}{lcl} Let  a, b, c,  and  n  be positive integers. If  a + b + c = 19 \cdot 97  and  \\ \left[a + n = b - n = \dfrac{c}{n}\right],  compute the value of  a . \end{array} }}$$

$$\small{\text{ \begin{array}{lrrrcl} & a+b+c=19\cdot 97 \\ \\ \hline \\ (1)& a+n=k \\ (2) & b-n=k &\qquad \qquad (1)+(2): & a+b&=& 2\cdot k\\ (3) & \dfrac{c}{n}=k &\qquad \qquad so & c &=& k\cdot n\\\\ & & & a+b+c &=& 2\cdot k + k\cdot n=19\cdot 97 \\ \hline \\ \end{array} }}\\\\ \small{\text{ \begin{array}{rrclrcl} & 2\cdot k + k\cdot n &=& 19\cdot 97\\\\ & k\cdot(2+n)&=& 19\cdot 97\\\\ I. & {k}\cdot{(2+n)}&=& {19}\cdot {97}\\\\ & \underline{k=19} && \underline{2+n = 97 }& \qquad \Rightarrow \qquad n&=& 95\\ & && & a+n&=& k\\ & && & a+95&=& 19\\ & && & a&=& -76 ~ negative! \\ \\ II. & {k}\cdot{(2+n)}&=& {97}\cdot {19}\\\\ & \underline{k=97} && \underline{2+n = 19 }& \qquad \Rightarrow \qquad n&=& 17\\ & && & a+n&=& k\\ & && & a+17&=& 97\\ & && & a&=& 80 ~ okay! \\ \end{array} }}$$

heureka  Jul 3, 2015
#3
+91462
+5

2 great answers - thanks Alan and Heureka

Melody  Jul 3, 2015

### 13 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details