+0  
 
+3
90
3
avatar+320 

Let S(0,p), T(6, -2) and O(0,0) are three vertices of a triangle STO.If ST = SO, Find the value of p please!

Davis  Jun 3, 2017

Best Answer 

 #2
avatar+4174 
+2

We can use the distance formula on this problem:

 

distance between  (x, y1)  and  (x, y2)   =   \(\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\)

 

____________________________________________________________

 

 

ST = SO

 

distance between point S and point T = distance between point S and point O

 

distance between  (0,p)  and  (6, -2)   =   distance between  (0,p)  and  (0,0)

 

\(\sqrt{(0-6)^2+(p--2)^2}=\sqrt{(0-0)^2+(p-0)^2}\)           Square both sides of this equation.

 

(0 - 6)2 + (p - -2)2   =   (0-0)2 + (p - 0)2

 

(-6)2 + (p + 2)2   =   (0)2 + (p)2

 

36 + p2 + 4p + 4   =   p2

 

40 + 4p   =   0

 

4p   =   -40

 

p   = -10

hectictar  Jun 4, 2017
Sort: 

3+0 Answers

 #1
avatar+320 
+1

I don't know what it is!

Davis  Jun 3, 2017
 #2
avatar+4174 
+2
Best Answer

We can use the distance formula on this problem:

 

distance between  (x, y1)  and  (x, y2)   =   \(\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\)

 

____________________________________________________________

 

 

ST = SO

 

distance between point S and point T = distance between point S and point O

 

distance between  (0,p)  and  (6, -2)   =   distance between  (0,p)  and  (0,0)

 

\(\sqrt{(0-6)^2+(p--2)^2}=\sqrt{(0-0)^2+(p-0)^2}\)           Square both sides of this equation.

 

(0 - 6)2 + (p - -2)2   =   (0-0)2 + (p - 0)2

 

(-6)2 + (p + 2)2   =   (0)2 + (p)2

 

36 + p2 + 4p + 4   =   p2

 

40 + 4p   =   0

 

4p   =   -40

 

p   = -10

hectictar  Jun 4, 2017
 #3
avatar+320 
+1

Thanks, this solved my question! :)

Davis  Jun 6, 2017

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details