+0

# math, help!

0
50
3
+311

On a particular day in Salt Lake, UT, the temperature was given by \(-t^2 +12t+50\) where \(t\)  is the time in hours past noon. What is the largest \(t\) value at which the temperature was exactly 77 degrees?

ant101  Dec 30, 2017

#1
+5888
+1

temperature  =  -t2 + 12t + 50

And we want to know what  t  is when the temperature is  77  .

77   =   -t2 + 12t + 50        Now we want to solve this equation for  t .

Get one side of the equation equal to zero.

t2 - 12t + 27   =   0

Now we can factor the left side like this..

(t - 9)(t - 3)   =   0

Set each factor equal to zero.

t - 9  =  0          or          t - 3  =  0

t  =  9               or          t  =  3

The largest value of  t  that causes the expression    -t2 + 12t + 50   to be  77  is   9   .

hectictar  Dec 30, 2017
Sort:

#1
+5888
+1

temperature  =  -t2 + 12t + 50

And we want to know what  t  is when the temperature is  77  .

77   =   -t2 + 12t + 50        Now we want to solve this equation for  t .

Get one side of the equation equal to zero.

t2 - 12t + 27   =   0

Now we can factor the left side like this..

(t - 9)(t - 3)   =   0

Set each factor equal to zero.

t - 9  =  0          or          t - 3  =  0

t  =  9               or          t  =  3

The largest value of  t  that causes the expression    -t2 + 12t + 50   to be  77  is   9   .

hectictar  Dec 30, 2017
#2
+311
+2

Boom! You rock, hectictar! It's correct! I understand it better now...

ant101  Dec 30, 2017
#3
+5888
+1

Thanks!! Glad to be of some help!!

hectictar  Dec 30, 2017

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details