+0

MATH!

0
63
2

Hard math:

If x+y = 2 and xy = 23, then what is x^2 + y^2?

Guest Jun 23, 2017
Sort:

#1
+1

There are no "real" solutions, just "complex" ones:

x = 1 - i sqrt(22) ≈ 1.00000 - 4.69042 i and y = 1 + i sqrt(22) ≈ 1.00000 + 4.69042 i

x = 1 + i sqrt(22) ≈ 1.00000 + 4.69042 i and y = 1 - i sqrt(22) ≈ 1.00000 - 4.69042 i

So that: ( 1 + i sqrt(22))^2 + (1 - i sqrt(22))^2

Simplify the following:
(i sqrt(22) + 1)^2 + (-(i sqrt(22)) + 1)^2

(i sqrt(22) + 1)^2 = 1 + i sqrt(22) + i sqrt(22) - 22 = 2 i sqrt(22) - 21:
2 i sqrt(22) - 21 + (-(i sqrt(22)) + 1)^2

(-(i sqrt(22)) + 1)^2 = 1 - i sqrt(22) - i sqrt(22) - 22 = -2 i sqrt(22) - 21:
-21 + 2 i sqrt(22) + -2 i sqrt(22) - 21

-21 + 2 i sqrt(22) - 21 - 2 i sqrt(22) = -42:

Guest Jun 23, 2017
#2
+75344
+2

x + y  = 2     square both sides →  x^2 + 2xy + y^2  =  4

Since  xy  = 23,, then  2xy  = 46

So we have that

x^2 + 46 + y^2  = 4       subtract 46 from both sides

x^2 + y^2  =  -42

CPhill  Jun 23, 2017

16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details