+0

# math

0
93
1

consider the intersection of the function; x2+y-8=0 and x+y=2. what is the greater of the x-coordinates of the points of intersection?

Guest May 15, 2017
Sort:

#1
+18365
+1

consider the intersection of the function; x2+y-8=0 and x+y=2.

what is the greater of the x-coordinates of the points of intersection?

$$\begin{array}{|lrcll|} \hline (1) & x^2+y-8 &=& 0 \\ & y &=& 8-x^2 \\\\ (2) & x+y&=& 2 \quad & | \quad y = 8-x^2 \\ & x+8-x^2 &=& 2 \\ & x^2 - x - 6 &=& 0 \\ & x &=& \frac{1\pm \sqrt{1-4\cdot(-6)} }{2} \\ & x &=& \frac{1\pm \sqrt{1+24} }{2} \\ & x &=& \frac{1\pm 5 }{2} \\ \\ & x_1 &=& \frac{1+5 }{2} \\ & x_1 &=& \frac62 \\ &\mathbf{ x_1 } & \mathbf{=} & \mathbf{3} \\\\ & x_2 &=& \frac{1-5 }{2} \\ & x_2 &=& -\frac{4}{2}\\ &\mathbf{ x_2 } & \mathbf{=} & \mathbf{-2} \\ \hline \end{array}$$

The greater of the x-coordinates of the points of intersection is 3

heureka  May 15, 2017

### 5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details