+0

# math

0
109
2

what is the sum of entries in row 10 of Pascal trigangle

Guest Apr 4, 2017
Sort:

### 2+0 Answers

#1
+76870
+1

The sum of the entries in row 10 of Pascal's Triangle  = 2^10  = 1024  where row "0"  = 1

CPhill  Apr 4, 2017
#2
+18610
+2

what is the sum of entries in row 10 of Pascal trigangle

$$\begin{array}{|rcll|} \hline (1+x)^{10} &=& \binom{10}{0} + \binom{10}{1}x \\ &+& \binom{10}{2}x^2 + \binom{10}{3}x^3 \\ &+& \binom{10}{4}x^4 + \binom{10}{5}x^5 \\ &+& \binom{10}{6}x^6 + \binom{10}{7}x^7 \\ &+& \binom{10}{8}x^8 + \binom{10}{9}x^9 \\ &+& \binom{10}{10}x^{10} \\ \hline \end{array}$$

Set x = 1:

$$\begin{array}{|rcll|} \hline (1+1)^{10} &=& \binom{10}{0} + \binom{10}{1}\cdot 1 \\ &+& \binom{10}{2}\cdot 1^2 + \binom{10}{3}\cdot 1^3 \\ &+& \binom{10}{4}\cdot 1^4 + \binom{10}{5}\cdot 1^5 \\ &+& \binom{10}{6}\cdot 1^6 + \binom{10}{7}\cdot 1^7 \\ &+& \binom{10}{8}\cdot 1^8 + \binom{10}{9}\cdot 1^9 \\ &+& \binom{10}{10}\cdot 1^{10} \\\\ 2^{10} &=& \binom{10}{0} + \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \binom{10}{4} + \binom{10}{5} \\ &+& \binom{10}{6} + \binom{10}{7} + \binom{10}{8} + \binom{10}{9} + \binom{10}{10} \\ \hline \end{array}$$

The sum of entries in row 10 of Pascal trigangle is 210

heureka  Apr 5, 2017

### 28 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details