+0  
 
0
73
2
avatar+1166 

The parabola with equation \(y=ax^2+bx+c\)  is graphed below:



The zeros of the quadratic \(ax^2 + bx + c\)  are at x=m and x=n , where m>n . What is m-n ?

tertre  Mar 12, 2017

Best Answer 

 #2
avatar+1166 
+5

Thanks so much! You're smart.

tertre  Mar 12, 2017
Sort: 

2+0 Answers

 #1
avatar+76929 
+5

We know that

 

y = a(x - 2)^2 - 4

 

And the point (4,12)  is on the graph....so...

 

12 = a(4 - 2)^2 - 4

12 = 4a - 4

16 = 4a

4 = a

 

So  we have that

 

y = 4(x - 2)^2 - 4

y = 4(x^2 - 4x + 4) - 4

y = 4x^2 - 16x + 16 - 4

y = 4x^2 - 16x + 12

 

And to find the roots

 

0 = 4x^2 - 16x + 12      divide through by 4

0 = x^2 - 4x + 3   factor

0 = (x - 3) ( x - 1)      set each factor to 0  and m = 3  and n = 1

 

So....m - n  =  3 - 1 = 2

 

Here's a graph :  https://www.desmos.com/calculator/yvxfjhlbkv

 

 

cool cool cool

CPhill  Mar 12, 2017
 #2
avatar+1166 
+5
Best Answer

Thanks so much! You're smart.

tertre  Mar 12, 2017

20 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details