+0

# maths

0
41
1

Given that x^2 +ax +b =(x+2)^2 -9 work out a and b

expression x^2 - 10x - 5 can be written in form (x+p)^2 + q

find value of p and q

write expression 2x^2 - 8x + 19 in form a(x+b)^2 + c

find coordinates of minimum point on graph

state if and where the graph crosses x-axis

Guest Oct 25, 2017
Sort:

#1
+78592
+1

Given that x^2 +ax +b =(x+2)^2 -9 work out a and b

Just expand (x+2)^2 -9  =

x^2 + 4x + 4 - 9  =  x^2 + 4x - 5    ⇒ a = 4      b = -5

x^2 - 10x - 5

Take  1/2 of 10  = 5.....square it  = 25 .... add and subtract it

x^2 - 10x + 25 -  25           factor the first three terms

(x - 5)^2  - 25     =  ( x + (-5) )^2   -  25    ⇒    p =  -5        q  = -25

write expression 2x^2 - 8x + 19 in form a(x+b)^2 + c

Factor out  2

2 [  x^2  - 4x  +  19/2]

Take 1/2 of 4  = 2......square it......= 4.....add and subtract it

2 [  x ^2 -  4x  + 4   +  19/2  -  4 ]

2 [  x^2 - 4x  +  4  +  19/2  - 8/2 ]      factor the first three terms

2 [ ( x - 2)^2  +  11/2]

2(x - 2)^2  +  11

The minimum point on the graph  is   (2,11)

Since this minimum lies above the x axis......the graph never crosses that axis

CPhill  Oct 25, 2017

### 16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details