+0

# Modular Arithmetic Help!!!

+1
191
5
+109

(a) How many positive integers $$N$$  from 1 to 5000 satisfy the congruence $$N\equiv5\pmod{12}$$ ?

(b) How many positive integers $$N$$  from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$ ?

Jeff123  Sep 14, 2017
edited by Jeff123  Sep 14, 2017
Sort:

#1
+18829
+5

Modular Arithmetic

(a) How many positive integers   from 1 to 5000 satisfy the congruence  $$N\equiv5\pmod{12}$$?

$$\begin{array}{|lrcll|} \hline N\equiv5\pmod{12} & \text { or } & N-5 &=& n\cdot 12 \\ & & N &=& n\cdot 12 + 5 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 12 + 5 \\ & & n &=& \frac{5000-5}{12} \\ & & n &=& [416].25 \\\\ \mathbf{n=416} &\Rightarrow& N &=& 416\cdot 12 + 5 = 4997 \\ \hline \end{array}$$

416  + 1(n=0)  = 417 positive integers from 1 to 5000 satisfy the congruence $$N\equiv5\pmod{12}$$

(b) How many positive integers   from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$ ?

$$\begin{array}{|lrcll|} \hline N\equiv11\pmod{13} & \text { or } & N-11 &=& n\cdot 13 \\ & & N &=& n\cdot 13 + 11 \quad & | \quad N_{max} = 5000 \\ & & 5000 &=& n\cdot 13 + 11 \\ & & n &=& \frac{5000-11}{13} \\ & & n &=& [383].769230769 \\\\ \mathbf{n=383} &\Rightarrow & N &=& 383\cdot 13 + 11 = 4990 \\ \hline \end{array}$$

383 + 1(n=0) = 384 positive integers from 1 to 5000 satisfy the congruence $$N\equiv11\pmod{13}$$

heureka  Sep 14, 2017
edited by heureka  Sep 15, 2017
#2
+109
+1

The answer is wrong, I tried those answers before too. IDK why it won't work...

Jeff123  Sep 14, 2017
#3
+2

Both answers above forget to include n = 0.

Answers should be 417 and 384 resp.

Guest Sep 15, 2017
#4
+18829
+4

Thank you!

heureka  Sep 15, 2017
#5
+109
+1

Thank you so much!!!!!!

Jeff123  Sep 16, 2017

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details