+0

# Modular Math

+1
102
1

What is the smallest positive integer that will satisfy the following two modular equations: N mod 3,331 =1,851 and N mod 1,851 =1,468?
Thank you for help.

Guest Oct 19, 2017
Sort:

#1
+18827
+1

What is the smallest positive integer that will satisfy the following two modular equations:

N mod 3,331 =1,851 and

N mod 1,851 =1,468?

$$\begin{array}{|rcll|} \hline N &\equiv& 1851 \pmod{3331} \\ N &\equiv& 1468 \pmod{1851} \\ \hline \end{array}$$

Formula:

$$\begin{array}{rcll} N = 1851\cdot 1851\cdot \frac{1}{1851} \pmod{3331} + 1468\cdot 3331 \cdot \frac{1}{3331} \pmod{1851} + 3331\cdot 1851\cdot z \\ \quad z \in Z \\ \end{array}$$

check:

$$\begin{array}{|rcll|} \hline \pmod{3331}: & N = 1851 \cdot \frac{1851}{1851} + 0 +0 = 1851 \ \checkmark \\ \pmod{1851}: & N = 0 + 1468 \cdot \frac{3331}{3331} + 0 = 1468 \ \checkmark \\ \hline \end{array}$$

$$\text{with }\varphi() =\text{ Euler's totient theorem }: \\ 3331 \text{ prime number} \qquad \varphi(p) = p-1 \qquad \varphi(3331) = 3330 \\ 1851 =3\cdot 617\qquad \varphi(1851) =1851\cdot \left(1-\frac13\right)\left(1-\frac{1}{617}\right) = 1232$$

Modular inverses:

$$\begin{array}{|rcll|} \hline && \frac{1}{1851} \pmod{3331} \\ &\equiv& 1851^{\varphi(3331)-1} \pmod{3331} \quad & | \quad gcd(3331,1851)=1 \\ &\equiv& 1851^{3330-1} \pmod{3331} \\ &\equiv& 1851^{3329} \pmod{3331} \\ && \ldots \\ &\equiv& 835 \pmod{3331} \\ \hline \end{array}$$

$$\begin{array}{|rcll|} \hline && \frac{1}{3331} \pmod{1851} \\ &\equiv& 3331^{\varphi(1851)-1} \pmod{1851} \quad & | \quad gcd(3331,1851)=1 \\ &\equiv& 3331^{1232-1} \pmod{1851} \\ &\equiv& 3331^{1231} \pmod{1851} \\ && \ldots \\ &\equiv& 1387 \pmod{1851} \\ \hline \end{array}$$

$$\begin{array}{rcll} N &=& 1851\cdot 1851\cdot 835 + 1468 \cdot 3331 \cdot 1387 + 3331\cdot 1851\cdot z \quad & | \quad z \in Z \\ &=& 2860877835 + 6782302396 + 6165681\cdot z \\ &=& \underbrace{9643180231}_{\equiv 55147 \pmod{6165681}} + 6165681\cdot z \\ &=& 55147 + 6165681\cdot z \\ \end{array}$$

$$\begin{array}{|rcll|} \hline \mathbf{55147} &\mathbf{\equiv}& \mathbf{1851 \pmod{3331}} \\ \mathbf{55147} &\mathbf{\equiv}& \mathbf{1468 \pmod{1851}} \\ \hline \end{array}$$

heureka  Oct 20, 2017
edited by heureka  Oct 20, 2017

### 9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details