+0  
 
0
80
1
avatar+95 

Quadrilateral \(WXYZ\) has right angles at \(\angle{W}\) and \(\angle{Y}\) and an acute angle at \(\angle{X}\). Altitudes are dropped from \(X\) and \(Z\) to diagonal \(\overline{WY}\), meeting \(\overline{WY}\) at \(O\) and \(P\) as shown. Prove that \(OW=PY\).

 

benjamingu22  Sep 14, 2017
edited by benjamingu22  Sep 14, 2017
Sort: 

1+0 Answers

 #1
avatar+78719 
+1

 Note that  triangle XOY  is similar to triangle  YPZ .....so....

 XO / OY  = YP /  PZ  →  XO * PZ  =  YO * YP

 

Also, triangle XOW  is similar to triangle WPZ ...so.... 

XO / OW  = WP / PZ  →  XO * PZ  = OW * WP

 

Which implies that

 

YO * YP  =  OW * WP

 

But YO  = YP + PO     and WP = OW + PO

 

Therefore....by substitution.....

 

[ YP + PO ] YP  =  OW [ OW + PO ]   simplify

 

YP^2 - OW^2  =  PO [ OW - YP ]     subtract the right side from both sides

 

[ YP + OW] [ YP - OW ] - PO [ OW -YP]  = 0      factor out a negative

 

[ YP + OW ] [ YP - OW] + PO [ YP - OW] = 0    factor out  [ YP - OW]  

 

[ YP - OW] [ YP + OW + PO ]  = 0

 

So, by the zero factor property,  either

 

[ YP + OW + PO ]  = 0

 

But this is impossible since  YP, OW and PO  are all > 0

 

Or

 

[ YP - OW]  = 0   

 

Which implies that  YP = OW    →  PY  = OW

 

 

cool cool cool

CPhill  Sep 15, 2017
edited by CPhill  Sep 15, 2017

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details