+0  
 
0
100
4
avatar

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth. v=⟨−13,−1⟩v=⟨−13,−1⟩ w=⟨19,−3.1⟩

Guest Mar 28, 2017
Sort: 

3+0 Answers

 #1
avatar+75333 
+1

cos (theta)  =   [ u dot v ] /  [ length of u * length of v ]

 

u  = (-13, -1)   v   = (19, -3.1)

 

u dot v  =  ( -13 * 19  +   -1 * -3.1)  =  (-247 + 3.1)  = -243.9

 

Length of u   =   sqrt[ 13^2 + 1^1) =  sqrt (170)

Length of v  = sqrt ( 19^2 + 3.1^2)   = sqrt (370.61)

 

 

cos (theta  =   -243.9 / [ sqrt (170) * sqrt ( 370.61) ]

 

arccos  [ -243.9 / [ sqrt (170) * sqrt (370.61) ] = theta  ≈  166.33°

 

 

cool cool cool

CPhill  Mar 28, 2017
 #2
avatar+75333 
0

Sorry.....the vectors should be noted as v and w, not u and v....but......the the same procedure holds

 

 

 

cool cool cool

CPhill  Mar 28, 2017
 #4
avatar+18369 
+4

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth.

v=⟨−13,−1⟩ w=⟨19,−3.1⟩

 

\(\vec{v} = \binom{-13}{-1} \\ \vec{w} = \binom{19}{-3.1}\)

 

\(\begin{array}{|rcll|} \hline \tan(\varphi) &=& \frac{ |\vec{v} \times \vec{w}| } {\vec{v} \cdot \vec{w}} \\ &=& \frac{ \left|\binom{-13}{-1} \times \binom{19}{-3.1} \right| } {\binom{-13}{-1} \cdot \binom{19}{-3.1} } \\ &=& \frac{ (-13)\cdot(-3.1)-(-1)\cdot 19 } {(-13)\cdot 19 + (-1)\cdot(-3.1) } \\ &=& \frac{ 40.3+19 } {-247 + 3.1 } \\ &=& \frac{ 59.3 } {-243.9 } \quad & | \quad \frac{+}{-}\ \text{Quadrant }\ II. \\ &=& -\frac{ 59.3 } {243.9 } \\ \tan(\varphi) &=& -0.24313243132 \\ \varphi &=& \arctan( -0.24313243132 ) + 180^{\circ} \\ &=& -13.6653125958+ 180^{\circ} \\ \varphi &=& 166.334687404^{\circ} \\ \hline \end{array} \)

 

The angle between \(\vec{v}\) and \(\vec{w} \) is \(166.33^{\circ}\)

 

laugh

heureka  Mar 28, 2017

11 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details