+0  
 
0
332
7
avatar+354 

If i have a ball and I drop it on the floor, knowing the mass (3g) and velocity it bounces up at, how do i calculate the height it bounces to. Assume 0 wind resistance and gravity is 10

physics
radio  Dec 11, 2014

Best Answer 

 #6
avatar+26397 
+5

Apply Newton's 2nd law of motion (Force = mass*acceleration):

 

Vertical

Net force = -mg

-mg = m*d2y/dt2

so the mass cancels out and we are left with:

d2y/dt2 = -g  which is the same as your equation Melody.

 

Horizontal

Net force = 0

0 = m*d2x/dt2

so dividing by the mass we are left with

d2x/dt= 0

 

Mass is not relevant here.

.

Alan  Dec 13, 2014
Sort: 

7+0 Answers

 #1
avatar+270 
+5

According to your question, we are finding the height of second bounce.

If I say it's s, 

the u(initial velocity) of first bounce should be 0, because you said you are dropping, not adding force.

the v(final velocity) of first bounce should be u(initial velocity) of second bounce.

and the ball at peak of second bounce, the speed should be 0.

if we work out the acceleration by F=ma, (or if time or acceleration is given and you didn't mention) then we can work out s. By formula $${{\mathtt{v}}}^{{\mathtt{2}}} = {{\mathtt{u}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{as}}$$

$$0=(u_1) ^2+2as$$ (I'm setting peak of second bounce as end)

flflvm97  Dec 11, 2014
 #2
avatar+91412 
+5

Hi radio,

That is a good question.  

I am not sure if the mass comes into this problem or not.  I don't think that it does.  

This is my guess.  I will ask someone more knowledgable to take a look at this question though.

 

I usually do these with calculus.

Initially. When the ball first leaves the ground

$$\\t=0, \\ \quad accel= \ddot y = -10m/s^2, \\ \quad vel=\dot y=u\;\;m/s,\\ \quad displacement=y=0\;metres\\\\
Ongoing\\
\ddot y = -10\qquad $Any stat point will be a maximum$\\
\dot y=-10t+u\\
y=-5t^2+ut\\\\$$

Maximum height will  be attained when velocity =0

$$\\-10t+u=0\\
10t=u\\
t=\frac{u}{10}\;\;seconds\\\\
$Now find y when $ t=\frac{u}{10}\\\\
y=-5\times \frac{u^2}{100}+u\times \frac{u}{10}\\\\
y=\frac{-u^2}{20}+ \frac{2u^2}{20}\\\\
y= \frac{u^2}{20}\\$$

-------------------------------------------------------------------------

LET me see if I can do the same thing using physics formulas.

Initial velocity =u

final velocity = v =0

accel =a = -10

find displacement s

 

 

the only formula with u,v,a and s is  [4]

$$\\v^2=u^2+2as\\
0=u^2+2*-10s\\
-u^2=-20s\\\\
s=\frac{u^2}{20}$$

 

I got the same answer both ways.  That is good anyway   

 

The ball will reach a height of     $${\frac{{{\mathtt{u}}}^{{\mathtt{2}}}}{{\mathtt{20}}}}$$   metres on the first bounce

Melody  Dec 13, 2014
 #3
avatar+91412 
0

I'd really like a physics person to discuss the relevance of the mass of the ball. Please.  

Melody  Dec 13, 2014
 #4
avatar+26397 
+5

The mass is not needed here.

.

Alan  Dec 13, 2014
 #5
avatar+91412 
+5

I was hoping you would discuss it a little more than that Alan.

Is there anything more that you can say - I mean, why is mass irrelevant?

Melody  Dec 13, 2014
 #6
avatar+26397 
+5
Best Answer

Apply Newton's 2nd law of motion (Force = mass*acceleration):

 

Vertical

Net force = -mg

-mg = m*d2y/dt2

so the mass cancels out and we are left with:

d2y/dt2 = -g  which is the same as your equation Melody.

 

Horizontal

Net force = 0

0 = m*d2x/dt2

so dividing by the mass we are left with

d2x/dt= 0

 

Mass is not relevant here.

.

Alan  Dec 13, 2014
 #7
avatar+91412 
0

Thanks you Alan, much appreciated.  

Melody  Dec 13, 2014

21 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details