+0  
 
0
86
1
avatar

580 nm light shines on a double slit with d=0.000125 m. What is the angle of the third dark interference minimum(m=3)? 

\(dsin\theta=m\lambda \)

Guest Mar 13, 2017
Sort: 

1+0 Answers

 #1
avatar+18610 
+5

580 nm light shines on a double slit with d=0.000125 m.
What is the angle of the third dark interference minimum(m=3)?


\(\begin{array}{rcll} Let\ d &=& 0.000125\ m \\ d &=& 125 \cdot 10^{-6}\ m \\\\ Let\ \lambda &=& 580\ nm \\ \lambda &=& 580 \cdot 10^{-9}\ m \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline d\sin(\theta) &=& m \lambda \\ \sin(\theta) &=& m\cdot \frac{\lambda}{d} \quad & | \quad m=3 \\ \sin(\theta) &=& 3\cdot \frac{580 \cdot 10^{-9}\ m }{125 \cdot 10^{-6}\ m} \\ \sin(\theta) &=& 3\cdot \frac{580}{125} \cdot 10^{-9+6} \\ \sin(\theta) &=& \frac{1740}{125} \cdot 10^{-3} \\ \sin(\theta) &=& 13.92 \cdot 10^{-3} \\ \sin(\theta) &=& 0.01392 \\ \theta &=& \arcsin(0.01392) \\ \theta &=& 0.79758300970^{\circ} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details