+0  
 
0
412
2
avatar+5567 

I have a couple of questions...

 

Determine convergence or divergence of the series.

 

1.    \(\sum_{k=0}^{\infty}\frac{k+1}{k^2+2k+3}\)

 

2.    \(\sum_{k=1}^{\infty}\frac{k^4+2k-1}{k^5-3k^2+1}\)

 

 

Thank you very much in advance smiley

.

hectictar  Apr 25, 2017
edited by hectictar  Apr 25, 2017
Sort: 

2+0 Answers

 #1
avatar+26366 
+3

Calculate the ratio of the (n+1)'th term to the n'th term and then let n tend to infinity.  You will find in each case that the ratio tends to 1, so that there are an infinite number of same size terms being added, leading to an infinite sum.

 

For example, the ratio of the (n+1)'th to the n'th term for your first sum is:   (n+2)(n^2+2n+3)/[(n+1)(n^2+4n+6)] which tends to 1 as n tends to infinity.

.

Alan  Apr 25, 2017
 #2
avatar+5567 
+2

Oh okay.. Thank you Alan smiley

hectictar  Apr 25, 2017

3 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details