+0  
 
0
188
4
avatar

Please help me differentiate in terms of x and y for sin(x+y)=cosy

Guest Jan 19, 2015

Best Answer 

 #1
avatar+91451 
+10

PLEASE NOTE :  I have no idea if this is correct - someone please check   

sin(x+y)=cosy

differentiate y in terms of x

 

$$\begin{array}{rll}
sin(x+y)&=&cosy\\\\
cos(x+y)[1+\frac{dy}{dx}]&=&-(siny)\frac{dy}{dx}\\\\
cos(x+y)+cos(x+y)\frac{dy}{dx}+(siny)\frac{dy}{dx}&=&0\\\\
cos(x+y)\frac{dy}{dx}+(siny)\frac{dy}{dx}&=&-cos(x+y)\\\\
\frac{dy}{dx}[cos(x+y)+(siny)]&=&-cos(x+y)\\\\
\frac{dy}{dx}&=&\frac{-cos(x+y)}{cos(x+y)+(siny)}\\\\
\end{array}$$

 

If that is correct then i guess

 

$$\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\$$

Melody  Jan 19, 2015
Sort: 

4+0 Answers

 #1
avatar+91451 
+10
Best Answer

PLEASE NOTE :  I have no idea if this is correct - someone please check   

sin(x+y)=cosy

differentiate y in terms of x

 

$$\begin{array}{rll}
sin(x+y)&=&cosy\\\\
cos(x+y)[1+\frac{dy}{dx}]&=&-(siny)\frac{dy}{dx}\\\\
cos(x+y)+cos(x+y)\frac{dy}{dx}+(siny)\frac{dy}{dx}&=&0\\\\
cos(x+y)\frac{dy}{dx}+(siny)\frac{dy}{dx}&=&-cos(x+y)\\\\
\frac{dy}{dx}[cos(x+y)+(siny)]&=&-cos(x+y)\\\\
\frac{dy}{dx}&=&\frac{-cos(x+y)}{cos(x+y)+(siny)}\\\\
\end{array}$$

 

If that is correct then i guess

 

$$\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\$$

Melody  Jan 19, 2015
 #2
avatar+81004 
+5

Both answers are correct, Melody....

 

CPhill  Jan 19, 2015
 #3
avatar+91451 
+5

Thanks Chris.   

Melody  Jan 19, 2015
 #4
avatar
+5

Ahh, thanks guys!

Guest Jan 21, 2015

17 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details