+0

0
162
1

If sinA = cosA was is the angle measurement?

Guest May 7, 2017
Sort:

#1
+18777
+1

If sin(A)=cos(A) was is the angle measurement?

$$\small{ \begin{array}{rcl|rcl|rcl} \sin(A)&=&\cos(A) \\ \cos(A)-\sin(A) &=& 0 & \sin(45^{\circ}-A) &=& \sin(45^{\circ})\cdot\cos(A)- \cos(45^{\circ})\cdot\sin(A) & \sin(45^{\circ})=\cos(45^{\circ}) = \frac{\sqrt{2}}{2} \\ & & & \sin(45^{\circ}-A) &=& \frac{\sqrt{2}}{2}\cdot\cos(A)- \frac{\sqrt{2}}{2}\cdot\sin(A) \\ & & & \sin(45^{\circ}-A) &=& \frac{\sqrt{2}}{2}\Big(\cdot\cos(A)- \sin(A) \Big) \\ \frac{2}{\sqrt{2}}\cdot \sin(45^{\circ}-A)&=& 0 & \frac{2}{\sqrt{2}}\cdot \sin(45^{\circ}-A) &=& \cos(A)- \sin(A) \\ \sin(45^{\circ}-A)&=& 0 \\ 45^{\circ}-A &=& \arcsin(0) \\ 45^{\circ}-A &=& 0\pm n\cdot 360^{\circ} \qquad n \in \mathbb{N} \\ \mathbf{A} & \mathbf{=} & \mathbf{45^{\circ} \pm n\cdot 360^{\circ}} \\\\ \sin(45^{\circ}-A)=\sin(180^{\circ}-(45^{\circ}-A) ) &=& 0 \\ 180^{\circ}-(45^{\circ}-A) &=& \arcsin(0) \\ 180^{\circ}-45^{\circ}+A &=& \arcsin(0) \\ 135^{\circ} + A &=& 0\pm n\cdot 360^{\circ} \qquad n \in \mathbb{N} \\\\ A &=& -135^{\circ} \pm n\cdot 360^{\circ} \\ A &=& -135^{\circ} + 360^{\circ} \pm n\cdot 360^{\circ} \\ \mathbf{A} & \mathbf{=} & \mathbf{225^{\circ} \pm n\cdot 360^{\circ}} \\ \end{array} }$$

heureka  May 8, 2017

### 12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details