+0  
 
0
63
1
avatar

It does not come out to y^7 FYI. I can't figure it out

Guest Jul 12, 2017
Sort: 

1+0 Answers

 #1
avatar+4174 
+1

Sometimes when these exponents get confusing it helps to write out all the letters as many times as the exponent says. Also, we can write out the prime factorization 147...

 

\(\sqrt{{\color{magenta}147}\,\cdot\,{\color{RedOrange}x^6}\,\cdot\,{\color{teal}y^7}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7\,\cdot\,3}\,\cdot\,{\color{RedOrange}x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x}\,\cdot\,{\color{teal}y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7}}\cdot\sqrt{{\color{magenta}3}}\,\cdot\,\sqrt{{\color{RedOrange}x \,\cdot\, x}} \,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, x}}\,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, {\color{RedOrange}x}}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y}}\)

 

 

The square root of  (7 * 7)  is the square root of  7 squared, which is  7  .

The square root of  (x * x)  is  x  .  The square root of  (y * y)  is  y  .

 

So we can write the original expression as...

 

\( =7\,\cdot\,\sqrt{3}\,\cdot\,x \,\cdot\, x \,\cdot\,x \,\cdot \, y\,\cdot\,y\,\cdot\,y\,\cdot\,\sqrt{y} \\~\\ =7\,\cdot\,\sqrt3\,\cdot\,x^3\,\cdot\,y^3\,\cdot\,\sqrt{y} \\~\\ =7x^3y^3\sqrt{3y}\)

hectictar  Jul 12, 2017

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details