+0

# Polynomials

+1
49
1

The polynomial 2x^3–ax^2+5bx+4b has a factor x–2 and, when divided by x+1, a remainder of –15 is obtained. Find the values of a and b. With these values of a and b, factorize the polynomial completely.

Guest Dec 2, 2017
Sort:

### 1+0 Answers

#1
+79894
+1

If x - 2 is a factor....then  2  is a zero

Thus

2(2)^3  - a(2)^2  + 5b(2) + 4b  = 0

16 - 4a + 10b  + 4b  = 0

-4a + 14b  = -16

2a - 7b  = 8                   (1)

And

2(-1)^3  - a(-1)^2  + 5b(-1) + 4b  = -15

-2   - a   - 5b + 4b   = -15

-a - b  =   -13   ⇒   -2a - 2b  =  -26      (2)

Add (1)  and (2)    and we have

-9b  =  -18    ⇒    b  = 2

So

-a - 2  = -13

-a  =  -11

a  = 11

So....the polynomial is

2x^3 - 11x^2 + 5(2)x + 4(2)

2x^3 - 11x^2 + 10x + 8

And we can write

2x^3  [ - 4x^2  -  7x^2 ] + 10x + 8

[2x^3 - 4x^2]  - [7x^2 - 10x - 8 ]

2x^2 (x  - 2)  -  [ 7x^2 - 10x - 8 ]

2x^2 (x - 2) - [ ( 7x  + 4) (x - 2) ]

(x - 2) (2x^2 - 7x - 4)

(x - 2) (2x + 1) ( x - 4)

CPhill  Dec 2, 2017

### 8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details