+0  
 
+1
49
1
avatar

 

The polynomial 2x^3–ax^2+5bx+4b has a factor x–2 and, when divided by x+1, a remainder of –15 is obtained. Find the values of a and b. With these values of a and b, factorize the polynomial completely.

Guest Dec 2, 2017
Sort: 

1+0 Answers

 #1
avatar+79894 
+1

If x - 2 is a factor....then  2  is a zero

 

Thus  

 

2(2)^3  - a(2)^2  + 5b(2) + 4b  = 0

16 - 4a + 10b  + 4b  = 0

-4a + 14b  = -16

2a - 7b  = 8                   (1) 

 

And

2(-1)^3  - a(-1)^2  + 5b(-1) + 4b  = -15

-2   - a   - 5b + 4b   = -15

-a - b  =   -13   ⇒   -2a - 2b  =  -26      (2)

 

Add (1)  and (2)    and we have

 

-9b  =  -18    ⇒    b  = 2

 

So

 

-a - 2  = -13

-a  =  -11

a  = 11

 

So....the polynomial is

 

2x^3 - 11x^2 + 5(2)x + 4(2)

2x^3 - 11x^2 + 10x + 8

 

And we can write

 

2x^3  [ - 4x^2  -  7x^2 ] + 10x + 8

[2x^3 - 4x^2]  - [7x^2 - 10x - 8 ]

2x^2 (x  - 2)  -  [ 7x^2 - 10x - 8 ]

2x^2 (x - 2) - [ ( 7x  + 4) (x - 2) ]

(x - 2) (2x^2 - 7x - 4)

(x - 2) (2x + 1) ( x - 4)

 

 

cool cool cool

CPhill  Dec 2, 2017

8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details