+0  
 
0
129
2
avatar

(cosx / sinx) + (2sinx / cosx) + (sin^3x / cos^3x) How to simplify the expression with the LCM?

Guest Apr 2, 2017
Sort: 

2+0 Answers

 #1
avatar+75383 
0

The LCM  is sinx*cos^3x....so we have

 

cos(x) cos^3 (x) / [ sin (x) * cos^3 (x)] +

 

[2 sinx * sin x * cos^2 (x)] / [sin (x)cos^3 (x)] +

 

[ sin (x) sin^3(x)] / [ sin(x) cos^3 (x) ]  =

 

 

[cos^4 (x) + 2 sin (x) cos^3(x) + sin^4 (x)] / [ sin (x)cos^3(x) ] =

 

[cos^4 (x) + 2 sin (x) cos(x) * cos^2(x) + sin^4 (x)] / [ sin (x)cos^3(x) ]  =

 

[ cos^4 (x) + sin(2x)*cos^2(x) + sin^4(x) ]  / [ sin(x)cos^3(x) ]

 

 

cool cool cool

CPhill  Apr 2, 2017
 #2
avatar+18394 
+2

(cosx / sinx) + (2sinx / cosx) + (sin^3x / cos^3x)

How to simplify the expression with the LCM?

 

\(\begin{array}{|rcll|} \hline && \frac{\cos(x)}{\sin(x)} + \frac{2\sin(x) }{ \cos(x) } + \frac{ \sin^3(x) } { \cos^3(x) } \\ &=& \frac{\cos(x)}{\sin(x)}\cdot \frac{\cos^3(x)}{\cos^3(x)} + \frac{2\sin(x) }{ \cos(x) } \cdot \frac{\sin(x)\cos^2(x)}{\sin(x)\cos^2(x)} + \frac{ \sin^3(x) } { \cos^3(x) }\cdot \frac{ \sin(x) } { \sin(x) } \\ &=& \frac{\cos(x)\cos^3(x)+ 2\sin(x)\sin(x)\cos^2(x) + \sin^3(x)\sin(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\cos^4(x)+ 2\sin^2(x)\cos^2(x) + \sin^4(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\sin^4(x)+2\sin^2(x)\cos^2(x)+\cos^4(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\Big( \sin^2(x)+\cos^2(x) \Big)^2 } {\sin(x)\cos^3(x) } \quad & | \quad \sin^2(x)+\cos^2(x) = 1 \\ &=& \frac{ 1^2 } {\sin(x)\cos^3(x) } \\ &=& \frac{ 1 } {\sin(x)\cos^3(x) } \\ \hline \end{array} \)

 

laugh

heureka  Apr 3, 2017

21 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details