+0

# Precalculus proving trigonometric identities

0
129
2

(cosx / sinx) + (2sinx / cosx) + (sin^3x / cos^3x) How to simplify the expression with the LCM?

Guest Apr 2, 2017
Sort:

#1
+75383
0

The LCM  is sinx*cos^3x....so we have

cos(x) cos^3 (x) / [ sin (x) * cos^3 (x)] +

[2 sinx * sin x * cos^2 (x)] / [sin (x)cos^3 (x)] +

[ sin (x) sin^3(x)] / [ sin(x) cos^3 (x) ]  =

[cos^4 (x) + 2 sin (x) cos^3(x) + sin^4 (x)] / [ sin (x)cos^3(x) ] =

[cos^4 (x) + 2 sin (x) cos(x) * cos^2(x) + sin^4 (x)] / [ sin (x)cos^3(x) ]  =

[ cos^4 (x) + sin(2x)*cos^2(x) + sin^4(x) ]  / [ sin(x)cos^3(x) ]

CPhill  Apr 2, 2017
#2
+18394
+2

(cosx / sinx) + (2sinx / cosx) + (sin^3x / cos^3x)

How to simplify the expression with the LCM?

$$\begin{array}{|rcll|} \hline && \frac{\cos(x)}{\sin(x)} + \frac{2\sin(x) }{ \cos(x) } + \frac{ \sin^3(x) } { \cos^3(x) } \\ &=& \frac{\cos(x)}{\sin(x)}\cdot \frac{\cos^3(x)}{\cos^3(x)} + \frac{2\sin(x) }{ \cos(x) } \cdot \frac{\sin(x)\cos^2(x)}{\sin(x)\cos^2(x)} + \frac{ \sin^3(x) } { \cos^3(x) }\cdot \frac{ \sin(x) } { \sin(x) } \\ &=& \frac{\cos(x)\cos^3(x)+ 2\sin(x)\sin(x)\cos^2(x) + \sin^3(x)\sin(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\cos^4(x)+ 2\sin^2(x)\cos^2(x) + \sin^4(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\sin^4(x)+2\sin^2(x)\cos^2(x)+\cos^4(x) } {\sin(x)\cos^3(x) } \\ &=& \frac{\Big( \sin^2(x)+\cos^2(x) \Big)^2 } {\sin(x)\cos^3(x) } \quad & | \quad \sin^2(x)+\cos^2(x) = 1 \\ &=& \frac{ 1^2 } {\sin(x)\cos^3(x) } \\ &=& \frac{ 1 } {\sin(x)\cos^3(x) } \\ \hline \end{array}$$

heureka  Apr 3, 2017

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details