+0  
 
0
571
5
avatar



Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W. Round numerical values to the nearest hundredth.








 


A)0.4(cos 137º - isin 137º)




 




 


B)0.4(cos 137º + isin 137º)




 




 


C)10(cos 137º - isin 137º)




 




 


D)10(cos 137º + isin 137º)




 




Guest Nov 24, 2014

Best Answer 

 #2
avatar+91446 
+10

I have another method :)

 

$$cos\theta+isin\theta = e^{i\theta}\\\\$$ 

 

where theta is in radians

 

$$\\148^0=\frac{148\pi}{180}\; radians\\\\
11^0=\frac{11\pi}{180}\; radians\\\\$$

 

Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W.

 

becomes  

 

$$\\\dfrac{2e^{(148\pi/180)i}}{5e^{(11\pi/180)i}}\\\\
=0.4e^{[(148\pi/180)-(11\pi/180)]i}\\\\$$

 

$$\left({\frac{{\mathtt{148}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{11}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{180}}}}\right) = {\mathtt{2.391\: \!101\: \!075\: \!232\: \!231\: \!5}}$$

 

=0.4cos (2.3911010752322315) +0.4* isin(2.3911010752322315) 

 

remember this is in radians.

 

= -0.2925 + 0.2728i

 

=  -0.29 + 0.27i

 

I think that method is correct. 

Melody  Nov 25, 2014
Sort: 

5+0 Answers

 #1
avatar+17711 
+10

If you have two complex numbers written in polar notation, for example:

A = a(cosα + i·sinα)     and     B = b(cosβ + i·sinβ)  

Then A / B  =  (a/b)( cos(α - β) + i·sin(α - β) )

Can you see how to apply this?

geno3141  Nov 24, 2014
 #2
avatar+91446 
+10
Best Answer

I have another method :)

 

$$cos\theta+isin\theta = e^{i\theta}\\\\$$ 

 

where theta is in radians

 

$$\\148^0=\frac{148\pi}{180}\; radians\\\\
11^0=\frac{11\pi}{180}\; radians\\\\$$

 

Given Z = 2(cos 148º + isin 148º) and W = 5(cos 11º + isin 11º), find and simplify Z divided by W.

 

becomes  

 

$$\\\dfrac{2e^{(148\pi/180)i}}{5e^{(11\pi/180)i}}\\\\
=0.4e^{[(148\pi/180)-(11\pi/180)]i}\\\\$$

 

$$\left({\frac{{\mathtt{148}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{11}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}{{\mathtt{180}}}}\right) = {\mathtt{2.391\: \!101\: \!075\: \!232\: \!231\: \!5}}$$

 

=0.4cos (2.3911010752322315) +0.4* isin(2.3911010752322315) 

 

remember this is in radians.

 

= -0.2925 + 0.2728i

 

=  -0.29 + 0.27i

 

I think that method is correct. 

Melody  Nov 25, 2014
 #3
avatar+91446 
0

How did you get your equation Geno.

I can see another method but you seem to have used a 3rd method 

Melody  Nov 25, 2014
 #4
avatar+26399 
+5

To answer your question Melody, use the following notation;

$$A=ae^{i\alpha}$$

$$B=be^{i\beta}$$

then

$$\frac{A}{B}=\frac{a}{b}e^{i(\alpha - \beta)}\rightarrow \frac{a}{b}(\cos(\alpha -\beta)+i\sin(\alpha - \beta))$$

.

Alan  Nov 25, 2014
 #5
avatar+91446 
0

There you go.

I am practicing my philosophical approach.

Why do it the easy way if there is a long way that works just as well.    LOL

Thanks Alan.  

Melody  Nov 25, 2014

5 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details