+0

# Problem:

+1
90
1

Problem:

In the diagram below, points A,E  and F lie on the same line. If ABCDE is a regular pentagon, and angle EFD=90 degrees, then how many degrees are in the measure of FDE?

Guest Aug 1, 2017

#1
+4711
+3

∠DEF  is an exterior angle of pentagon ABCDE.

The sum of all exterior angles in a polygon  =  360º

Since ABCDE is a regular pentagon, all 5 of its exterior angles have the same measure.

So..the measure of one exterior angle  =  360° / 5  =  72°

m∠DEF  =  72°

Since there are 180° in every triangle...

m∠DEF + m∠EFD + m∠FDE  =  180°

72°    +    90°    + m∠FDE  =  180°                Subtract  72°  and  90°  from both sides.

m∠FDE  =  18°

hectictar  Aug 2, 2017
Sort:

#1
+4711
+3

∠DEF  is an exterior angle of pentagon ABCDE.

The sum of all exterior angles in a polygon  =  360º

Since ABCDE is a regular pentagon, all 5 of its exterior angles have the same measure.

So..the measure of one exterior angle  =  360° / 5  =  72°

m∠DEF  =  72°

Since there are 180° in every triangle...

m∠DEF + m∠EFD + m∠FDE  =  180°

72°    +    90°    + m∠FDE  =  180°                Subtract  72°  and  90°  from both sides.

m∠FDE  =  18°

hectictar  Aug 2, 2017

### 26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details