+0

# Prove that if $w,z$ are complex numbers such that $|w|=|z|=1$ and $wz\ne -1$, then $\frac{w+z}{1+wz}$ is a real number.

+2
91
6
+518

Prove that if $w,z$ are complex numbers such that $|w|=|z|=1$ and $wz\ne -1$, then $\frac{w+z}{1+wz}$ is a real number.

michaelcai  Dec 14, 2017

#1
+3

Let $$\displaystyle w = \cos\theta+ \imath \sin\theta \text{ and } z = \cos\phi + \imath\sin\phi$$.

The bottom line will be $$\displaystyle 1+\cos(\theta+\phi)+\imath\sin(\theta + \phi)$$.

Multiply top and bottom by the conjugate of this number and then pick out the imaginary part of the top line, showing that it's equal to zero, (therefore showing that the fraction is a real number).

You will need to use the expansion for sin(A + B) in the simplification.

Tiggsy

Guest Dec 15, 2017
Sort:

#1
+3

Let $$\displaystyle w = \cos\theta+ \imath \sin\theta \text{ and } z = \cos\phi + \imath\sin\phi$$.

The bottom line will be $$\displaystyle 1+\cos(\theta+\phi)+\imath\sin(\theta + \phi)$$.

Multiply top and bottom by the conjugate of this number and then pick out the imaginary part of the top line, showing that it's equal to zero, (therefore showing that the fraction is a real number).

You will need to use the expansion for sin(A + B) in the simplification.

Tiggsy

Guest Dec 15, 2017
#2
+518
0

Is there a way without using trigonometry?

michaelcai  Dec 16, 2017
#3
+1

If you are aware of the way in which complex numbers are added multiplied and divided on an Argand diagram then yes it is possible to avoid much of the algebra.

Suppose that P and Q are points representing the complex numbers w and z, that O is the origin, then the complex number w+z will be at the point which is the fourth vertex of the parallelogram defined by OP and OQ. Because, in this case, w and z both lie on the unit circle, the parallelogram will be a rhombus and in that case its diagonal will bisect the angle POQ.

So, if arg(w) = theta and arg(z) = phi (and if, for convenience, phi > theta)

then arg(w + z) = theta + (phi - theta)/2 = (phi + theta)/2 ................... (1)

With multiplication, the moduli of the numbers are multiplied and the arguments added, that means that |wz| = 1

and arg(wz)= (phi + theta).

Applying the rule for addition again, (arg(1) = 0),  so arg(1 + wz) = 0 + (phi + theta - 0)/2 = (phi + theta)/2 ................... (2)

With division, one modulus is divided by the other and one argument subracted from the other (the reverse of the operation for multiplication), so, from (1) and (2), arg[(w + z)/(1 + wz)] = 0. That means that the number lies on the real axis and so is real.

If you are going to solve this problem algebraically though, involving the circular functions sine and cosine is the best, easiest, way to go.

Tiggsy

Guest Dec 17, 2017
#4
+518
0

I should be more specific. I need to find a way to solve it using the complex plane

michaelcai  Dec 17, 2017
#5
+1

The Argand diagram is the complex plane.

Guest Dec 18, 2017
#6
+91451
0

Thanks Tiggsy

Melody  Dec 18, 2017

### 14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details