+0

0
40
1
+63

The smallest distance between the origin and a point on the parabola $y=x^2-5$ can be expressed as $\sqrt{a}/b$, where $a$ is not divisible by the square of any prime. Find $a+b$.

michaelcai  Aug 11, 2017
Sort:

#1
+75302
+1

Let  u be the x coordinate of the point we seek....so u^2  - 5 is the y coordinate

And we are  seeking to minimize tthe distance, D, expressed as

D  = [ (u - 0)^2 + ( u^2  - 5 -  0 )^2 ]^(1/2)

D  = [ u^2  + u^4 - 10u^2  + 25 ]^(1/2)

D  = [ u^4  - 9u^2 + 25 ]^(1/2)

Take the derivative of this  and set it to 0

D'  = (1/2)   [ u^4  - 9u^2 + 25 ]^(-1/2) * [ 4u^3 - 18u]  = 0

This will = 0 whenever [ 4u^3 - 18u]  = 0

Factor

u [ 4u^2  - 18]  = 0

Setting both factors to 0

Either  u = 0  and  u^2 - 5  = 5    ....so one possible point is  (0, -5)  and this is 5 units from the origin

Or

4u^2  - 18  = 0

4u^2  = 18

u^2  = 18/4

u  = ± √ [18 /4]  = ± 3√2 / 2      and  u^2  - 5  =  18/4 - 5 =  18/4 - 20 / 4  = - 2/4 =   (-1/2)

So....the other points are  ( 3√2 / 4 , - 1/2 )   and  ( - 3√2 / 4 , - 1/2 )

And the distance that either one of these points is from the origin is given by

D  = √  [  (18/4)^2 - 9 (18/4)  + 25 ]  =  √  [ 324 - 648 + 400] / 4  =  √76 / 4  = 2√19/ 4  =  √19/2 ≈ 2.179

And this is the minimum distance from the origin to any point on the parabola

So...... √a / b  =    √19 / 2      and   a +  b  =  19  + 2  = 21

CPhill  Aug 11, 2017
edited by CPhill  Aug 12, 2017

### 12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details