+0

# question of one

0
64
2

what is x in sin x =.5

Guest Feb 17, 2017

### Best Answer

#2
+18605
+10

what is x in sin x =.5

$$\begin{array}{|rcll|} \hline \sin(x) &=& 0.5 \\ x_1 &=& \arcsin(0.5) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ \mathbf{x_1} &\mathbf{=}& \mathbf{30^{\circ} + z\cdot 360^{\circ}} \\\\ \sin(x)=\sin(180^{\circ}-x) &=& 0.5 \\ 180^{\circ}-x_2 &=& \arcsin(0.5) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ x_2 &=& 180^{\circ}- \arcsin(0.5) + z\cdot 360^{\circ} \\ x_2 &=& 180^{\circ}- 30^{\circ} + z\cdot 360^{\circ} \\ \mathbf{x_2} &\mathbf{=}&\mathbf{ 150^{\circ} + z\cdot 360^{\circ}} \\ \hline \end{array}$$

heureka  Feb 17, 2017
Sort:

### 2+0 Answers

#1
+10614
0

x = arcsin(.5)

asin(.5) = 30 degrees

ElectricPavlov  Feb 17, 2017
#2
+18605
+10
Best Answer

what is x in sin x =.5

$$\begin{array}{|rcll|} \hline \sin(x) &=& 0.5 \\ x_1 &=& \arcsin(0.5) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ \mathbf{x_1} &\mathbf{=}& \mathbf{30^{\circ} + z\cdot 360^{\circ}} \\\\ \sin(x)=\sin(180^{\circ}-x) &=& 0.5 \\ 180^{\circ}-x_2 &=& \arcsin(0.5) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ x_2 &=& 180^{\circ}- \arcsin(0.5) + z\cdot 360^{\circ} \\ x_2 &=& 180^{\circ}- 30^{\circ} + z\cdot 360^{\circ} \\ \mathbf{x_2} &\mathbf{=}&\mathbf{ 150^{\circ} + z\cdot 360^{\circ}} \\ \hline \end{array}$$

heureka  Feb 17, 2017

### 11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details