+0

# Quick Trig Question

0
100
2

If sinA=-.4382. 0<A<360. Find two possible values for A.

Guest Mar 15, 2017
Sort:

#1
+10614
0

Arcsin  -  .4382 =  334.01 degrees      205.98 degrees

ElectricPavlov  Mar 15, 2017
edited by ElectricPavlov  Mar 15, 2017
#2
+18626
0

If sin(A) = -0.4382.  0 < A < 360.

Find two possible values for A.

$$\begin{array}{|rcll|} \hline \sin(A) &=& -0.4382 \\ A_1 &=& \arcsin(-0.4382) + z\cdot 360^{\circ} \quad & | \quad z \in \mathbb{Z} \\ A_1 &=& -25.9890903445^{\circ} + z\cdot 360^{\circ} \\ A_1 &=& -25.9890903445^{\circ}+360^{\circ} + z\cdot 360^{\circ} \\ \mathbf{A_1} &\mathbf{=}& \mathbf{334.010909656^{\circ} + z\cdot 360^{\circ}} \\\\ \sin(A)=\sin(180^{\circ}-A) &=&-0.4382 \\ 180^{\circ}-A_2 &=& \arcsin(-0.4382) + z\cdot 360^{\circ} \quad & | \quad z \in Z \\ A_2 &=& 180^{\circ}- \arcsin(-0.4382) + z\cdot 360^{\circ} \\ A_2 &=& 180^{\circ}- (-25.9890903445^{\circ}) + z\cdot 360^{\circ} \\ A_2 &=& 180^{\circ}+25.9890903445^{\circ}) + z\cdot 360^{\circ} \\ \mathbf{A_2} &\mathbf{=}&\mathbf{205.989090344^{\circ}+ z\cdot 360^{\circ}} \\ \hline \end{array}$$

0 < A < 360.

$$\begin{array}{|rcll|} \hline \mathbf{A_1} &\mathbf{=}& \mathbf{334.010909656^{\circ} } \\ \mathbf{A_2} &\mathbf{=}& \mathbf{205.989090344^{\circ}} \\ \hline \end{array}$$

heureka  Mar 15, 2017

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details