+0  
 
0
164
3
avatar

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

Guest Apr 20, 2017
Sort: 

3+0 Answers

 #1
avatar+18625 
+1

the angles of a triangle are in the ratio 3:5:4 calculate the size of each angle

 

\(\begin{array}{rcll} \text{Let } \alpha &=& \text{angle}_1 \\ \text{Let } \beta &=& \text{angle}_2 \\ \text{Let } \gamma &=& \text{angle}_3 \\ \gamma &=& 180^{\circ}-(\alpha+\beta) \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline && \alpha : \beta : \gamma \\ &=& \alpha : \beta : 180^{\circ}-(\alpha+\beta) \\ &=& 3:5:4 \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1): & \frac{\alpha}{\beta} &=& \frac{3}{5} \\ & \alpha &=& \frac{3}{5}\cdot \beta \\\\ (2): & \frac{\alpha}{\gamma} = \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{\alpha} { 180^{\circ}-(\alpha+\beta) } &=& \frac{3}{4} \\ & \frac{4}{3} \cdot \alpha &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \alpha = \frac{3}{5}\cdot \beta \\ & \frac{4}{3} \cdot \frac{3}{5}\cdot \beta &=& 180^{\circ}-(\frac{3}{5}\cdot \beta +\beta) \\ & \frac{4}{5} \cdot \beta &=& 180^{\circ}-\frac{8}{5}\cdot \beta \\ & \frac{4}{5} \cdot \beta +\frac{8}{5}\cdot \beta &=& 180^{\circ} \\ & \frac{12}{5} \cdot \beta &=& 180^{\circ} \\ & \beta &=& 180^{\circ}\cdot \frac{5}{12} \\ & \mathbf{ \beta } & \mathbf{=} & \mathbf{ 75^{\circ} } \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & \alpha &=& \frac{3}{5}\cdot \beta \quad & | \quad \mathbf{ \beta = 75^{\circ} } \\ & \alpha &=& \frac{3}{5}\cdot 75^{\circ} \\ & \mathbf{ \alpha } & \mathbf{=} & \mathbf{ 45^{\circ} } \\ \\ & \gamma &=& 180^{\circ}-(\alpha+\beta) \quad & | \quad \mathbf{ \alpha = 45^{\circ} } \qquad \mathbf{ \beta = 75^{\circ} } \\ & \gamma &=& 180^{\circ}-( 45^{\circ}+75^{\circ} ) \\ & \gamma &=& 180^{\circ}-120^{\circ} \\ & \mathbf{ \gamma } & \mathbf{=} & \mathbf{ 60^{\circ} } \\ \hline \end{array} \)

 

The angles of the triangle are \(45^{\circ},\ 75^{\circ},\ 60^{\circ}\)

 

laugh

heureka  Apr 20, 2017
 #2
avatar+77080 
+2

 

 

3 : 4 : 5      means that there are   3 + 4 + 5   =  12 equal parts

 

And the angles of a triangle sum to 180

 

So....one of these angles  is  3/12 of this  = 3/12 * 180 =  1/4 * 180  = 45°

 

And another of the angles  is  4/12  of this =   4/12 * 180 =  1/3 * 180   = 60°

 

And the last angle must be   180  - 45  - 60   =  75°

 

 

 

cool cool cool

CPhill  Apr 20, 2017
 #3
avatar+227 
+1

I would just take the 12 parts, and divide 180 the correct amount of times. That 1st answer is over complicated. LOL!

liveevillevi  Apr 20, 2017

2 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details