+0  
 
0
80
1
avatar

Really hard time with discriminants.

Guest Sep 26, 2017
Sort: 

1+0 Answers

 #1
avatar+79786 
+1

 

Here are the rules

(1) If the discriminant  = 0.....only one real  [double] root 

(2) If the discriminant > 0......two real roots

(3) If the discriminant < 0, no real roots

 

x^2 - kx + 4  = 0

 

If this has equal roots , the discriminant  = 0...so

 

b^2  - 4ac  = 0

 

(-k)^2  - 4(1)(4)  = 0

k^2  - 16  = 0 

k^2  = 16        taking both roots....k  = 4    or  k  =  -4

Prove this  to yourself     x^2 - 4x  + 4  = 0 →     (x - 2)^2  = 0       x  = 2 is a [double] root    or

x^2  + 4x + 4  =  0  →    (x + 2)^2  =0      and x  = -2   is a [double  root ]   

 

 

 

x^2  - 6x  + k  =0        equal roots....so....

 

(-6)^2  - 4 (1)k  = 0

36  - 4k  = 0    add 4k to both sides

36  = 4k         divide both sides by 4

k  = 9

Proof    x^2  - 6x  + 9   = 0    →  ( x - 3)^2   =  0    →    x  = 3  is a [double] root

 

 

 

3x^2 -2x + k  = 0 

So...the discriminant  must be  <  0

 

So

 

(-2)^2  - 4 (3)k  < 0

4  - 12k < 0     add 12k to both sides

4  < 12k          divide both sides by 12

(1/3) < k    →    k > 1/3

Prove this......look at the graph here :  https://www.desmos.com/calculator/cffskj6a9v

When  k  = 1/3....we have a [ double] root at x  = 1/3

But....when, for instance, k  =2/3, notice that we have no real roots

So any  k > 1/3    will produce imaginary  roots

 

 

 

cool cool cool

CPhill  Sep 26, 2017

10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details