+0  
 
0
34
1
avatar+21 

Required:

Sum of n terms for -3n^2+2n+5

OldTimer  Dec 4, 2017
edited by OldTimer  Dec 4, 2017
Sort: 

1+0 Answers

 #1
avatar+91237 
+3

Hi Old Timer    laugh

 

Sum of n terms for -3n^2+2n+5

 

\(\displaystyle\sum_{m=1}^n\; (-3m^2+2m+5)\\ =\displaystyle\sum_{m=1}^n\; -3m^2\quad+\displaystyle\sum_{m=1}^n2m\quad +5n\\ =\displaystyle\sum_{m=1}^n\; -3m^2\quad+\displaystyle\sum_{m=1}^n2m\quad +5n\\ \qquad\qquad \displaystyle\sum_{m=1}^n2m=\frac{n}{2}(a+L) = \frac{n}{2}(2+2n) = n(1+n)=n^2+n\\ =-3\left[\displaystyle\sum_{m=1}^n\; m^2\right]\quad+n^2+n\quad +5n\\ \text{** the next line was taken from a khan academy video which I will reference at the end.}\\ =-3\left[\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6}\right]\quad+n^2+n\quad +5n\\ =\left[-n^3-\frac{3n^2}{2}-\frac{n}{2}\right]\quad+n^2+n\quad +5n\\ =\frac{-2n^3}{2}-\frac{3n^2}{2}-\frac{n}{2}\quad+\frac{2n^2+2n\quad +10n}{2}\\~\\ =\dfrac{ -2n^3-n^2 +11n }{2} \)

 

Khan Academy videos:

https://www.khanacademy.org/math/calculus-home/series-calc/series-basics-challenge/v/sum-of-n-squares-1

https://www.khanacademy.org/math/calculus-home/series-calc/series-basics-challenge/v/sum-n-squares-2

 

You will need to check the algebra, I could easily have made a careless mistake :)

Melody  Dec 4, 2017

19 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details